Design &
(Design-level) Class Diagram

Announcement -- Reminder

e Midterm I:
— 1:00 — 1:50 pm Wednesday 23" March
— Ch. 1, 2,3 and 26.5
— Hour 1, 6, 7 and 19 (pp.331 — 335)
— Multiple choice

Agenda (Lecture)

 Design
 Design-level class diagram

— Add more information to classes and relationships

Agenda (Lab)

Develop a design-level class diagram for your group
project.

Quizzes (hours 3 and 5)
Weekly progress report

Submit the progress report, quizzes and design-level
class diagram by the end of the Wednesday lab

session.

Team Lab Assignment #8

* Create design-level class diagram for your group
project.

e Due date
— The end of the 3/16 lab session

Topics covered

 Object-oriented design using the UML
 Design patterns

Design and implementation

e Software design and implementation is the stage in
the software engineering process at which an
executable software system is developed.

e Software design and implementation activities are
invariably inter-leaved.

— Software design is a creative activity in which you identify
software components and their relationships, based on a
customer’s requirements.

— Implementation is the process of realizing the design as a
program.

Build or buy

* In a wide range of domains, it is now possible to buy off-
the-shelf systems (COTS) that can be adapted and
tailored to the users’ requirements.

— For example, if you want to implement a medical records
system, you can buy a package that is already used in hospitals.
It can be cheaper and faster to use this approach rather than
developing a system in a conventional programming language.
* When you develop an application in this way, the design
process becomes concerned with how to use the
configuration features of that system to deliver the

system requirements.

An object-oriented design process

e Structured object-oriented design processes involve
developing a number of different system models.

 They require a lot of effort for development and
maintenance of these models and, for small systems,
this may not be cost-effective.

 However, for large systems developed by different
groups design models are an important
communication mechanism.

Process stages

e There are a variety of different object-oriented design
processes that depend on the organization using the
process.

e Common activities in these processes include:
— Define the context and modes of use of the system;
— Design the system architecture;
— ldentify the principal system objects;
— Develop design models;
— Specify object interfaces.

e Process illustrated here using a design for a wilderness
weather station.

System context and interactions

 Understanding the relationships between the
software that is being designed and its external
environment is essential for deciding how to provide
the required system functionality and how to
structure the system to communicate with its
environment.

 Understanding of the context also lets you establish
the boundaries of the system. Setting the system
boundaries helps you decide what features are
implemented in the system being designed and what
features are in other associated systems.

Context and interaction models

e A system context model is a structural model that
demonstrates the other systems in the environment
of the system being developed.

 An interaction model is a dynamic model that shows

how the system interacts with its environment as it is
used.

System context for the weather station

Cantrod
I wpatem
1 "R
Weather .
infcammation ! 1 F&Eaﬁﬁr
sysbem
| l..n

Satellte :

Weather station use cases

I.-""- ﬁ-:;lc-rr""-.l
% ,.,h__'-:.-c.ﬂhr:.r_l_';
- e

el "
R it shabus |
A PO SR,

Wizatheer) .
nlfamal & I
L Sl T
Ir- Heskard N
""-. o o
i—.-_ T l-."r_
Ii‘ Shutdawn |

|'f.;i!-|;mr'.'|i |_;r_4;-.ﬁ"|
g) R o

Taniwn e ™
it s |
HY M

7 Remote N
% contral

Use case description—Report weather

Weather station

Use case
Actors

Description

Stimulus

Response

Comments

Report weather
Weather information system, Weather station

The weather station sends a summary of the weather data that has been
collected from the instruments in the collection period to the weather
information system. The data sent are the maximum, minimum, and average
ground and air temperatures; the maximum, minimum, and average air
pressures; the maximum, minimum, and average wind speeds; the total
rainfall; and the wind direction as sampled at five-minute intervals.

The weather information system establishes a satellite communication link
with the weather station and requests transmission of the data.

The summarized data is sent to the weather information system.

Weather stations are usually asked to report once per hour but this frequency
may differ from one station to another and may be modified in the future.

Architectural design

 Once interactions between the system and its environment
have been understood, you use this information for designing
the system architecture.

* You identify the major components that make up the
system and their interactions, and then may organize
the components using an architectural pattern such
as a layered or client-server model.

 The weather station is composed of independent
subsystems that communicate by broadcasting
messages on a common infrastructure.

High-level architecture of the weather
station

—1 1 1
-!Uh:r‘lb!lﬂ- |-|5-I_I|:l5I'|E-'|EI11- .5u'|:|:|,1|:.=|'|-|-
Fault nmiage: Conhguratien maneger Fusssc) maniages

£ Ay Jridadicn bna

| _]
esLbepetema ssubnestems wtl beysbeme
Commurecations Crata callechon Instruments

Architecture of data collection system

Dada callechizn l

‘ Transmiitied Receiver |

&
WeatherData ‘

Object class identification

e |dentifying object classes is often a difficult part of
object oriented design.

 Thereis no 'magic formula' for object identification.
It relies on the skill, experience
and domain knowledge of system designers.

* Object identification is an iterative process. You are
unlikely to get it right first time.

Approaches to identification

Use a grammatical approach based on a natural language
description of the system (used in Hood OOD method).

Base the identification on tangible things in the application
domain.

Use a behavioural approach and identify objects based on
what participates in what behaviour.

Use a scenario-based analysis. The objects, attributes and
methods in each scenario are identified.

Weather station description

A weather station is a package of software controlled instruments
which collects data, performs some data processing and transmits
this data for further processing. The instruments include air and
ground thermometers, an anemometer, a wind vane, a barometer
and a rain gauge. Data is collected periodically.

When a command is issued to transmit the weather data, the
weather station processes and summarises the collected data.
The summarised data is transmitted to the mapping computer
when a request is received.

Weather station object classes

 Object class identification in the weather station system may
be based on the tangible hardware and data in the
system:

— Ground thermometer, Anemometer, Barometer

e Application domain objects that are ‘hardware’ objects related to the
instruments in the system.

— Weather station

* The basic interface of the weather station to its environment. It therefore
reflects the interactions identified in the use-case model.

— Weather data
e Encapsulates the summarized data from the instruments.

Weather station object classes

Ve at bt atian WeatwerDrata
heered [Jef TemMparatres
. EroLnd Temparatures
"""I"“"""""’"'f) windSpeeds
repariata |) windDirections
panciShee Jrsinmeard) pressures
remedeConin ez niarda) Fainifall
reoondiguse Soomrancs)
restar [imsirurmianic) cellect [)
sheidseen (ratunents) sEmmane ()
o Lrcamd BE SRy i Easarwelzer
armemaiar |
an ke =r [edent
o et windSpend ATILRE
I L - wingdCArreclior, - ght
gt () get (1 ge i)
wa il et) BTG

Design models

* Design models show the objects and object classes
and relationships between these entities.

e Static models describe the static structure of the
system in terms of object classes and relationships.

 Dynamic models describe the dynamic interactions
between objects.

Examples of design models

Subsystem models that show logical groupings of objects into
coherent subsystems.

Sequence models that show the sequence of object
interactions.

State machine models that show how individual objects
change their state in response to events.

Other models include use-case models, aggregation models,
generalisation models, etc.

Subsystem models

 Shows how the design is organised into logically
related groups of objects.

 |nthe UML, these are shown using packages - an
encapsulation construct. This is a logical model. The
actual organisation of objects in the system may be
different.

Sequence models

 Sequence models show the sequence of object
interactions that take place
— Objects are arranged horizontally across the top;

— Time is represented vertically so models are read top to
bottom;

— Interactions are represented by labelled arrows, Different
styles of arrow represent different types of interaction;

— A thin rectangle in an object lifeline represents the time
when the object is the controlling object in the system.

Sequence diagram describing data
collection

TWaenkn
A Tl ST
% | S Ao mms Weanth s tartenr | '-E-:n'u'!rl'rglinlu:l |".'|IE5I'I|"HE-FI]31I|
A imqunt ooy
t L1ovdedge
- T operiVeather
dknowladpe ik (5107 ThaR ﬂ surmr e 1 ﬂ
SN [TRPITS i
L] 1
e SEL
. TPl (reparh :
slncwindza
—

State diagrams

 State diagrams are used to show how objects respond to
different service requests and the state transitions triggered

by these requests.
e State diagrams are useful high-level models of a
system or an object’s run-time behavior.

 You don’t usually need a state diagram for all of the
objects in the system. Many of the objects in a
system are relatively simple and a state model adds
unnecessary detail to the design.

Weather station state diagram

- .,
|: Carbralled |
o o
]
Dperatian
» m_u rem ohelombnol (3
4 -‘-"- L b) : ~, reponiSiatus) Y
Shuidown —= Runming | Pk Tecting J;I
o
It‘l. .l'.‘l .‘-] [|l £ =
) transmission dane test comiphebe
mﬁprauﬂn i o
-
racouipLiofy | Transmiiting |
T Prted S} clisch e ot o - A
- Y done reportiveather '
| configuring weather sumemiary
\ ¥ . comp|ats
i o -~ % | Summarzing | !
" Collecting | -

.
.,

Interface specification

Object interfaces have to be specified so that the objects and
other components can be designed in parallel.

Designers should avoid designing the interface representation
but should hide this in the object itself.

Objects may have several interfaces which are viewpoints on
the methods provided.

The UML uses class diagrams for interface specification but
Java may also be used.

Weather station interfaces

dinirrface.s
R g LT Renmoke Tontre!
Rraesbing
sty iinstramewiratureeni] Sates
wociherRops € (WS Kenk: Yirepart shapirdurent imstrume® Sl
stat it (VS ldenl]: Sesar collnciliats finesramronl Shius
eyidrDada dreurecat) o i

Key points

Software design and implementation are inter-leaved activities. The level
of detail in the design depends on the type of system and whether you are
using a plan-driven or agile approach.

The process of object-oriented design includes activities to design the
system architecture, identify objects in the system, describe the design
using different object models and document the component interfaces.

A range of different models may be produced during an object-oriented
design process. These include static models (class models, generalization
models, association models) and dynamic models (sequence models, state
machine models).

Component interfaces must be defined precisely so that other objects can
use them. A UML interface stereotype may be used to define interfaces.

Design patterns

A design pattern is a way of reusing abstract
knowledge about a problem and its solution.

A pattern is a description of the problem and the
essence of its solution.

It should be sufficiently abstract to be reused in
different settings.

Pattern descriptions usually make use of object-
oriented characteristics such as inheritance and
polymorphism.

Pattern elements

Name

— A meaningful pattern identifier.
Problem description.
Solution description.

— Not a concrete design but a template for a design solution
that can be instantiated in different ways.

Consequences
— The results and trade-offs of applying the pattern.

The Observer pattern

Name
— Observer.
Description
— Separates the display of object state from the object itself.
Problem description
— Used when multiple displays of state are needed.
Solution description
— See slide with UML description.
Consequences
— Optimisations to enhance display performance are impractical.

The Observer pattern (1)

Pattern Observer
name

Description Separates the display of the state of an object from the object itself and
allows alternative displays to be provided. When the object state
changes, all displays are automatically notified and updated to reflect the

change.
Problem In many situations, you have to provide multiple displays of state
description information, such as a graphical display and a tabular display. Not all of

these may be known when the information is specified. All alternative
presentations should support interaction and, when the state is changed,
all displays must be updated.

This pattern may be used in all situations where more than one
display format for state information is required and where it is not
necessary for the object that maintains the state information to know
about the specific display formats used.

The Observer pattern (2)

Solution This involves two abstract objects, Subject and Observer, and two concrete

description objects, ConcreteSubject and ConcreteObject, which inherit the attributes of the
related abstract objects. The abstract objects include general operations that are
applicable in all situations. The state to be displayed is maintained in
ConcreteSubject, which inherits operations from Subject allowing it to add and
remove Observers (each observer corresponds to a display) and to issue a
notification when the state has changed.

The ConcreteObserver maintains a copy of the state of ConcreteSubject and
implements the Update() interface of Observer that allows these copies to be kept
in step. The ConcreteObserver automatically displays the state and reflects
changes whenever the state is updated.

Consequences The subject only knows the abstract Observer and does not know details of the
concrete class. Therefore there is minimal coupling between these objects.
Because of this lack of knowledge, optimizations that enhance display
performance are impractical. Changes to the subject may cause a set of linked
updates to observers to be generated, some of which may not be necessary.

Multiple displays using the Observer
pattern

=

s

Ai'l:|n

Cbsermer 2 |

CObgeryer i }-

A UML model of the Observer pattern

Safyact

Alach dibsenvery

I:I'E'-!-.'.'-:-L- (Crbhsarver

pgtity f) e

=

CanireteSubject
GekState ()

subjectState

S L]

far all o in ohseners
o -5 Update ()

P Ohserer

Linarie (I

refum subjectState

Cancrets Oboamer

Update {} LA

obsemerstate

afserperstate = N
sub et > CetStaie o)

Design problems

e To use patterns in your design, you need to recognize
that any design problem you are facing may have an
associated pattern that can be applied.

— Tell several objects that the state of some other object has
changed (Observer pattern).

— Tidy up the interfaces to a number of related objects that have
often been developed incrementally (Facade pattern).

— Provide a standard way of accessing the elements in a
collection, irrespective of how that collection is implemented
(Iterator pattern).

— Allow for the possibility of extending the functionality of an
existing class at run-time (Decorator pattern).

ATM System

|
Operator
}
Session
Customer
«include»

| «extend»

Transaction
«include»

Deposit

Bank

Card

Money Log
A\
| /(
|
1
CashDispenser EnvelopeAcceptor NetworkToBank
CustomerConsole OperatorPanel
ATMController
CardReader ReceiptPrinter F-- —> Receipt
Session — Transaction
Withdrawal Deposit Transfer Inquiry
N ' 4 7
~ \ ,’ -

\

\ /
\ /
/
\\J V //

/ -

-

Account

Design-level Class Diagram

 Refer to Week8-1.pdf

