Architecture Design &
Sequence Diagram

Announcement -- Reminder

e Midterm I:
— 1:00 — 1:50 pm Wednesday 23" March
— Ch. 1, 2,3 and 26.5
— Hour 1, 6, 7 and 19 (pp.331 — 335)
— Multiple choice

Agenda (Lecture)

e Architecture design
 Sequence diagram

Agenda (Lab)

Create a use case-level (function-level) sequence
diagram (Lab Assignment #7) for your group project.

Quizzes (hours 9)
Weekly progress report

Submit the progress report and sequence diagram by
the end of the Wednesday lab session.

Team Lab Assighnment #7

e Create a use case-level (function-level) sequence
diagram (Lab Assignment #7) for your group project.

e Due date
— The end of the 3/9 lab session

Topics covered

Architectural design decisions
Architectural views

Architectural patterns
Application architectures

Software architecture

 The design process for identifying the sub-systems
making up a system and the framework for sub-
system control and communication is architectural
design.

 The output of this design process is a description of
the software architecture.

Architectural design

An early stage of the system design process.

Represents the link between specification and design
processes.

Often carried out in parallel with some specification
activities.

It involves identifying major system components and
their communications.

The architecture of a packing robot
control system

'''''''''
u L
]
T
¥
Obsj et .1. CApper
wientthcahom F L erardrall eoipare|las
Tyt)
M
Fackagimg
L p{artion
systeam
[}
[
)
|1-"Ii'|'illll|1 - ’ l:l' S skl
~ R L i
'ilu‘ih m annkro e

Architectural abstraction

e Architecture in the small is concerned with the
architecture of individual programs. At this level, we
are concerned with the way that an individual
program is decomposed into components.

* Architecture in the large is concerned with the
architecture of complex enterprise systems that
include other systems, programs, and program
components. These enterprise systems are
distributed over different computers, which may be
owned and managed by different companies.

Advantages of explicit architecture

e Stakeholder communication

— Architecture may be used as a focus of discussion by
system stakeholders.

e System analysis

— Means that analysis of whether the system can meet its
non-functional requirements is possible.

e Large-scale reuse

— The architecture may be reusable across a range of
systems

— Product-line architectures may be developed.

Architectural representations

e Simple, informal block diagrams showing entities and
relationships are the most frequently used method
for documenting software architectures.

 But these have been criticized because they lack
semantics, do not show the types of relationships

between entities nor the visible properties of entities
in the architecture.

 Depends on the use of architectural models. The
requirements for model semantics depends on how
the models are used.

Box and line diagrams

* Very abstract - they do not show the nature of

component relationships nor the externally visible
properties of the sub-systems.

e However, useful for communication with
stakeholders and for project planning.

Use of architectural models

e As a way of facilitating discussion about the system
design
— A high-level architectural view of a system is useful for
communication with system stakeholders and project planning
because it is not cluttered with detail. Stakeholders can relate to

it and understand an abstract view of the system. They can then
discuss the system as a whole without being confused by detail.

* As a way of documenting an architecture that has been
designed

— The aim here is to produce a complete system model that shows
the different components in a system, their interfaces and their
connections.

Architectural design decisions

e Architectural design is a creative process so the
process differs depending on the type of system
being developed.

e However, a number of common decisions span all
design processes and these decisions affect the non-
functional characteristics of the system.

Architectural design decisions

Is there a generic application architecture that can be used?
How will the system be distributed?

What architectural styles are appropriate?

What approach will be used to structure the system?

How will the system be decomposed into modules?

What control strategy should be used?

How will the architectural design be evaluated?

How should the architecture be documented?

Architecture reuse

e Systems in the same domain often have similar
architectures that reflect domain concepts.

* Application product lines are built around a core
architecture with variants that satisfy particular
customer requirements.

 The architecture of a system may be designed
around one of more architectural patterns or ‘styles’.

— These capture the essence of an architecture and can be
instantiated in different ways.

— Discussed later in this lecture.

Architecture and system characteristics

e Performance

— Localize critical operations and minimize communications. Use large
rather than fine-grain components.

e Security

— Use a layered architecture with critical assets in the inner layers.
o Safety

— Localize safety-critical features in a small number of sub-systems.
e Availability

— Include redundant components and mechanisms for fault tolerance.
e Maintainability
— Use fine-grain, replaceable components.

Architectural views

 What views or perspectives are useful when designing
and documenting a system’s architecture?

e What notations should be used for describing
architectural models?

e Each architectural model only shows one view or
perspective of the system.

— It might show how a system is decomposed into modules, how
the run-time processes interact or the different ways in which
system components are distributed across a network. For both
design and documentation, you usually need to present multiple
views of the software architecture.

4 + 1 view model of software
architecture

A logical view, which shows the key abstractions in
the system as objects or object classes.

A process view, which shows how, at run-time, the
system is composed of interacting processes.

A development view, which shows how the software
is decomposed for development.

A physical view, which shows the system hardware
and how software components are distributed across
the processors in the system.

Related using use cases or scenarios (+1)

Architectural patterns

Patterns are a means of representing, sharing and
reusing knowledge.

An architectural pattern is a stylized description of
good design practice, which has been tried and
tested in different environments.

Patterns should include information about when
they are and when the are not useful.

Patterns may be represented using tabular and
graphical descriptions.

The Model-View-Controller (MVC)
pattern

Description Separates presentation and interaction from the system data. The system is
structured into three logical components that interact with each other. The
Model component manages the system data and associated operations on
that data. The View component defines and manages how the data is
presented to the user. The Controller component manages user interaction
(e.g., key presses, mouse clicks, etc.) and passes these interactions to the
View and the Model. See Figure 6.3.

Example Figure 6.4 shows the architecture of a web-based application system
organized using the MVC pattern.

When used Used when there are multiple ways to view and interact with data. Also used
when the future requirements for interaction and presentation of data are
unknown.

Advantages Allows the data to change independently of its representation and vice versa.

Supports presentation of the same data in different ways with changes made
in one representation shown in all of them.

Disadvantages Can involve additional code and code complexity when the data model and
interactions are simple.

The organization of the Model-View-
Controller

Contrallas | o Wiz
H iar.
Maps user actions | gl FEMETS Model
bes il upd ates Fequests mods| wpdates
Solecks view - 1 Sends wser evends o
. . Uaar svemma | o)
A
g
wiikf ¢ Y
o
{ﬁ"r_" _ Smbne Y
| madal
Encapsulates applicaton
| state -
Matiies view of state
changes

Web application architecture using the
MVC pattern

-
AT
L Brasas

— -\:""1

2

Canstroller Yorve I
| bt

HTTP request processing =phar | DYNAMNIC PGS
Application-specifsc bogic Foneration

Diata validatian g Forms management
: LiRer s il

Theme
nak Acsbor.
L pdnta Rioeh reep 251
Mol

Busines logic
Oataba:e

Layered architecture

Used to model the interfacing of sub-systems.

Organises the system into a set of layers (or abstract
machines) each of which provide a set of services.

Supports the incremental development of sub-systems in
different layers. When a layer interface changes, only the
adjacent layer is affected.

However, often artificial to structure systems in this way.

The Layered architecture pattern

Description Organizes the system into layers with related functionality
associated with each layer. A layer provides services to the layer
above it so the lowest-level layers represent core services that
are likely to be used throughout the system. See Figure 6.6.

Example A layered model of a system for sharing copyright documents
held in different libraries, as shown in Figure 6.7.
When used Used when building new facilities on top of existing systems;

when the development is spread across several teams with each
team responsibility for a layer of functionality; when there is a
requirement for multi-level security.

Advantages Allows replacement of entire layers so long as the interface is
maintained. Redundant facilities (e.g., authentication) can be
provided in each layer to increase the dependability of the
system.

Disadvantages In practice, providing a clean separation between layers is often
difficult and a high-level layer may have to interact directly with
lower-level layers rather than through the layer immediately
below it. Performance can be a problem because of multiple
levels of interpretation of a service request as it is processed at
each layer.

A generic layered architecture

User irmterface I
Usar interface management
Authentication and authorization
Core business logic/application functionality
System utilities
System support (05, database etc) |

The architecture of the LIBSYS system

Web browser interface I

LIESYS Foams and Print
legin qUENy Manager MaNAager

Distributed Document Reghis
search retrieval manager

Library index I
31 ey

Accounting

Key points

A software architecture is a description of how a
software system is organized.

Architectural design decisions include decisions on the
type of application, the distribution of the system, the
architectural styles to be used.

Architectures may be documented from several different
perspectives or viewssuch as a conceptual view, a logical
view, a process view, and a development view.

Architectural patterns are a means of reusing knowledge
about generic system architectures. They describe the
architecture, explain when it may be used and describe
its advantages and disadvantages.

Repository architecture

e Sub-systems must exchange data. This may be done
In two ways:

— Shared data is held in a central database or repository and
may be accessed by all sub-systems;

— Each sub-system maintains its own database and passes
data explicitly to other sub-systems.
e When large amounts of data are to be shared, the
repository model of sharing is most commonly used
a this is an efficient data sharing mechanism.

The Repository pattern
eme [Remosy 000000000

Description All data in a system is managed in a central repository that is
accessible to all system components. Components do not
interact directly, only through the repository.

Example Figure 6.9 is an example of an IDE where the components use
a repository of system design information. Each software tool
generates information which is then available for use by other
tools.

When used You should use this pattern when you have a system in which
large volumes of information are generated that has to be
stored for a long time. You may also use it in data-driven
systems where the inclusion of data in the repository triggers
an action or tool.

Advantages Components can be independent—they do not need to know
of the existence of other components. Changes made by one
component can be propagated to all components. All data can
be managed consistently (e.g., backups done at the same
time) as it is all in one place.

Disadvantages The repository is a single point of failure so problems in the
repository affect the whole system. May be inefficiencies in
organizing all communication through the repository.
Distributing the repository across several computers may be
difficult.

A repository architecture for an IDE

LIAIL Code

pdrtors generators
A i livia
" T editos

Desen Project
transhtar |0 ™ ré pasitang t

i L Pyth
- v dit o

Design Report

analyzer genaratnr

Client-server architecture

Distributed system model which shows how data and
processing is distributed across a range of
components.

— Can be implemented on a single computer.

Set of stand-alone servers which provide specific
services such as printing, data management, etc.

Set of clients which call on these services.
Network which allows clients to access servers.

The Client—server pattern

Description In a client—server architecture, the functionality of the system is
organized into services, with each service delivered from a
separate server. Clients are users of these services and access
servers to make use of them.

Example Figure 6.11 is an example of a film and video/DVD library organized
as a client—server system.
When used Used when data in a shared database has to be accessed from a

range of locations. Because servers can be replicated, may also be
used when the load on a system is variable.

Advantages The principal advantage of this model is that servers can be
distributed across a network. General functionality (e.g., a printing
service) can be available to all clients and does not need to be
implemented by all services.

Disadvantages Each service is a single point of failure so susceptible to denial of
service attacks or server failure. Performance may be unpredictable
because it depends on the network as well as the system. May be
management problems if servers are owned by different
organizations.

A client—server architecture for a film
library

4 Py
| Lbent | i (UChent2 ' (uherts ; { CLhenta i.
¥ ¥ ¥ ¥
‘ Irtemet I

(]
Ir'.r'- l'_'nlnnl-n-u;
SeTyEr
Library

catalogue

Pipe and filter architecture

Functional transformations process their inputs to
produce outputs.

May be referred to as a pipe and filter model (as in
UNIX shell).

Variants of this approach are very common. When
transformations are sequential, this is a batch
sequential model which is extensively used in data
processing systems.

Not really suitable for interactive systems.

The pipe and filter pattern
Name [Peeandfer 000

Description The processing of the data in a system is organized so that each
processing component (filter) is discrete and carries out one type of
data transformation. The data flows (as in a pipe) from one component
to another for processing.

Example Figure 6.13 is an example of a pipe and filter system used for
processing invoices.
When used Commonly used in data processing applications (both batch- and

transaction-based) where inputs are processed in separate stages to
generate related outputs.

Advantages Easy to understand and supports transformation reuse. Workflow style
matches the structure of many business processes. Evolution by
adding transformations is straightforward. Can be implemented as
either a sequential or concurrent system.

Disadvantages The format for data transfer has to be agreed upon between
communicating transformations. Each transformation must parse its
input and unparse its output to the agreed form. This increases system
overhead and may mean that it is impossible to reuse functional
transformations that use incompatible data structures.

An example of the pipe and filter
architecture

- . .

[I

M eceints h 1-\ HazEipTE \
s Sl _

_-"ﬁ;-e.'n'.' i5.5|,.r¢r.'""'r. l"-", ledemiifs l
\ imoives g Y, Payments
- 5 -

& g Find

7 Issue
| payment Reminders
Y remind

. 2T e o

Application architectures

* Application systems are desighed to meet an
organizational need.

 As businesses have much in common, their
application systems also tend to have a common
architecture that reflects the application
requirements.

A generic application architecture is an architecture
for a type of software system that may be configured
and adapted to create a system that meets specific
requirements.

Use of application architectures

As a starting point for architectural design.
As a design checklist.

As a way of organising the work of the development
team.

As a means of assessing components for reuse.
As a vocabulary for talking about application types.

Examples of application types

Data processing applications

— Data driven applications that process data in batches without
explicit user intervention during the processing.

Transaction processing applications

— Data-centred applications that process user requests and
update information in a system database.

Event processing systems

— Applications where system actions depend on interpreting
events from the system’s environment.

Language processing systems

— Applications where the users’ intentions are specified in a
formal language that is processed and interpreted by the
system.

Application type examples

* Focus here is on transaction processing and language processing

systems.
* Transaction processing systems
— E-commerce systems;
— Reservation systemes.
 Language processing systems
— Compilers;
— Command interpreters.

Transaction processing systems

Process user requests for information from a
database or requests to update the database.

From a user perspective a transaction is:
— Any coherent sequence of operations that satisfies a goal;

— For example - find the times of flights from London to
Paris.

Users make asynchronous requests for service which
are then processed by a transaction manager.

The structure of transaction processing
applications

| Arnplicat on [Fargacten

s - = e L _ - > Data bk
OO S 1T logic manage

F E E

The software architecture of an ATM
system

Inowd L (=11 Cuipik
iGEl Cusstomer l: Prirt dieds ;l

accowunk ic

Query account

validate cand r

o
gie

Update acoount

Seledf sepace Dispense cash

A o [

Information systems architecture

* Information systems have a generic architecture that
can be organized as a layered architecture.

 These are transaction-based systems as interaction
with these systems generally involves database
transactions.

e Layers include:
— The user interface
— User communications
— Information retrieval
— System database

Layered information system
architecture

IUsesr mnterface I

icati Authentscation and
User communicatians i et

Infomrnation retrieval and madificatsan I

Transachon management
Database

The architecture of the MHC-PMS

Wics Groamiser I

Foem and menu Data
manager walidaticn

Legin Rode chedong

Secunty Patient info. Data impsaort Repart
management manages and pxport generation

Transachon managemert
Patient database

Web-based information systems

e Information and resource management systems are now
usually web-based systems where the user interfaces are
implemented using a web browser.

 For example, e-commerce systems are Internet-based
resource management systems that accept electronic
orders for goods or services and then arrange delivery of
these goods or services to the customer.

* |Inan e-commerce system, the application-specific layer
includes additional functionality supporting a ‘shopping
cart’ in which users can place a number of items in
separate transactions, then pay for them all together in a
single transaction.

Server implementation

e These systems are often implemented as multi-tier
client server/architectures (discussed in Chapter 18)

— The web server is responsible for all user communications,
with the user interface implemented using a web browser;

— The application server is responsible for implementing
application-specific logic as well as information storage
and retrieval requests;

— The database server moves information to and from the
database and handles transaction management.

Language processing systems

e Accept a natural or artificial language as input and generate
some other representation of that language.

e May include an interpreter to act on the instructions in the
language that is being processed.

e Used in situations where the easiest way to solve a problem is to
describe an algorithm or describe the system data

— Meta-case tools process tool descriptions, method rules, etc and
generate tools.

The architecture of a language
processing system

NEuaEe

. Chedk svniax
ImsEmuciio nes ™

Chedk semandics
Generato

Trarslator
CoanTe L L

T

Ahstract mc
insbructions

|I1|IEI|:“L"‘.E‘I'

[Data } w| FEich - e Recylts
EFxpcute

Compiler components

A lexical analyzer, which takes input language tokens
and converts them to an internal form.

A symbol table, which holds information about the
names of entities (variables, class names, object
names, etc.) used in the text that is being translated.

A syntax analyzer, which checks the syntax of the
language being translated.

A syntax tree, which is an internal structure
representing the program being compiled.

Compiler components

A semantic analyzer that uses information from the
syntax tree and the symbol table to check the
semantic correctness of the input language text.

A code generator that ‘walks’ the syntax tree and
generates abstract machine code.

A pipe and filter compiler architecture

_ [Symbal table |

I Wyriax free |

; . o . — ¥
I' Lesical } o Syntatic A" L semantic A o code At
\ aralesis '\ amakesic " anakesis i‘_gnﬂ:mﬂ:rm.nn |

A repository architecture for a
language processing system

T ’ Synkae { Semantic ™y
| analyzer :I s anakaer L anabrer J

4, Y #*
& Fretty . Abctract Cramrmesr I-'".:E_ B 1"-.
L printer ® o symaax tree definiion | ™ " CPOmizer
-.-r - "
d i bl Titpt ! a2
| Edior)‘ = S:a:r-:- didlir.z:::-r. = l"l. gc-l:-le--.:trr l.lll
N — L ""—_-"II

Repaston

Key points

e Models of application systems architectures help us
understand and compare applications, validate
application system designs and assess large-scale
components for reuse.

* Transaction processing systems are interactive systems
that allow information in a database to be remotely
accessed and modified by a number of users.

e Language processing systems are used to translate texts
from one language into another and to carry out the
instructions specified in the input language. They include
a translator and an abstract machine that executes the
generated language.

Use Case Realization

* More details are added to each use case, including
descriptions of the objects involved in carrying out
the use case.

 The process of extending and refining use cases is
called use-case realization.

e The number of sequence diagrams is equal to the
that of use cases.

Use Case Realization

* An interaction diagram (sequence diagram or
communication diagram) depicts the realization of a
specific scenario of the use case.

 The primary contribution of use case realization is to
help developers to make a complete class diagram, in
particularly by identifying objects that collaborate
and messages (that become methods or functions
for classes) and assigning them to specific classes.

Process for Developing
Sequence Diagrams

* |dentify and decide the objects that collaborate
* |dentify and decide messages between objects

* Messages
— Methods calls (synchronous)
— Return (reply) signal
— Sending a signal (asynchronous)
— Creating an object
— Destroying an object

Sequence Diagram Topics

* Topics

— Objects, lifeline, focus of control / activation, messages,
state invariants, combined fragments, guard conditions,
interaction operators (alternatives, options, break, parallel,
critical, assertion, loop), interaction occurrences,
decompositions, continuations, parallel, sequence, etc.

ATM System

|
Operator
}
Session
Customer
«include»

| «extend»

Transaction
«include»

Deposit

Bank

Card

Money Log
A\
| /(
|
1
CashDispenser EnvelopeAcceptor NetworkToBank
CustomerConsole OperatorPanel
ATMController
CardReader ReceiptPrinter F-- —> Receipt
Session — Transaction
Withdrawal Deposit Transfer Inquiry
N ' 4 7
~ \ ,’ -

\

\ /
\ /
/
\\J V //

/ -

-

Account

SD — ATM System Startup

sd System Startup)

:OperatorPanel :ATMController :CashDispenser :NetworkToBank

| |

| |

access 1 !
switchon() :

Operator

getinitialCash()

|
I
I
I
I
I
I
I
performStartup()
I
I
I
I
I
I
I
I

initialCash(iCash)
““““““ setlnitialCash(iCash

confirmation <z ---———---- A -

< ___________

sd System Shutdown)

:OperatorPanel

|
|
access 1

Operator

|
|
|
= switchOff() !

:ATMController

:NetworkToBank

>

performShutdown()

closeConnection()

User

sd Session)
:CardReader :ATMController :CustomerConsole

I I I
I dl ted() I I
P | cardainserte | |
>i :Session :
| |
| <<create>> : |
' |
! erformSession() /: !
. > |

|
readCz?rd() | :
| | |
sendCardInfo() h: |
} |
I readPIN() :

1
. >
I sendPIN() :
¢ .
|

|
ejectCérd 0

o]

[
<<create>>

T) [while customer want:s to perform transfctions
:Transaction

|
perform Tr&?nsaction 0

U R I [

I
doAgain()

[No further iransaction]

[A

S GREESCEEEEEE R LR R EEEES PP R EEEERs

><.

