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Purpose VAM

 What motivates the use of Value Added 
Models?
– Improve student performance
– Teacher pay/licensure decisions

 School Accountability
– Free rider problem

 Teacher Evaluation
– Elements of teacher evaluation

 Inputs as indicator
 Observations as indicators



VAM Introduction

 Vocabulary

 What are VAMs trying to measure?
– Teacher contribution to student learning

and attempting to make this a causal estimate

 Is there a plausible alternative? Unlike experimental 
setting where plausible alternative is specified, use 
average as basis for comparison.
– Average of what?

– School

– District 

– State 



Technical considerations

 Bias

– Student sorting

 Precision

 Reliability

 Stability



Practical considerations

 Assessments and scale

 Available data and linkages

 Tested and non-tested subjects

 Components of evaluation system



Models

 Models vary in complexity and 
assumptions

 Models vary in application

– Education basis

 generally random effects models

– Economist basis

 Generally fixed effects models

– State accountability based models



A First Approximation

 Ati = X + S + T + eti

 X = vector of student and family inputs

 S = vector of schooling inputs

 T = vector of teacher inputs

 Assumes etj is orthogonal to covariates, 
which is highly unlikely 



Rationale Underlying 
Value Added Models

 The underlying assumption for value added models is:

Ait = f(Bit, Pit, Sit, Iit, Eit), (1)

 where for student i at time t Achievement A, is some function  of:
– Student background (B)
– Peer and other influences (P)
– School/teacher inputs (T/S)
– Innate/general ability (I)
– And luck (E).

 Model is cumulative and past inputs may affect current 
Achievement.

 Also would need independent measure of innate ability, gathered 
before any S has occurred.



Specification

 If we assume that (1) holds for any time t, 
then we can consider change in 
achievement from t to t`.

Ait` - Ait = f(.)



VAM Specified

 Simplified specification

Ait = Ait-1 + Ttj + i + e*
it

where e*
it = eit - eit-1

Tj is teacher j’s effect and

i is an individual student time-invariant effect.

If assume =1 then use common “gain” 
model

Ait - Ait-1 = Ttj + i + e*
it



Assumes

 age independence

 additive separability

 fixed family inputs

 geometric decay in previous inputs 

 homogenous teacher effectiveness

 sorting based on fixed student covariates

 OLS produces biased estimates because At-1 and 
that part of e* related to et-1 - not orthogonal. 



Student Effects

 Student fixed effect i can be modeled by:

– Dummy variables

 Empirical evidence suggests that this biases 
teacher effects downwards.

– Using student time invariant covariates

– Assuming adequately captured by At-1

– Use instrumental variables or additional test 
scores for At-1



Teacher effects

 Can estimate Tj by

– Using dummy variables for each teacher

– Demeaning by teacher means

 Generating within unit estimates



Fixed effects

 Avoids bias (if sorting based on static 
factors) 

– Some evidence that sorting is based on 
dynamic factors.

 Limitations

– Can’t estimate time invariant effects

– ignores between teacher variability

 Teacher effects will be less precise than when 
using random effects models 



Random Effects Models

 Common approach used by educational 
researchers/statisticians

 Can be residualized gain, or growth 
specification.



ANCOVA Specification

 Atij = At-1ij + Tj + etij

 Where is a random teacher effect where:

Uj

Hence Atij = At-1ij + ( Uj + etij 

and Uj ~N(0, ) and assumed orthogonal to student 
covariates that may be in the model

Generally use EB estimates which “shrink” estimates 
towards mean (effect depends on reliability of teacher 
effect estimate).



Random Effects tradeoff

 Random effect teacher estimates are more 
precise

 Random effects may be biased if more 
restrictive (compared to fixed effects 
models) assumptions are not met.

 Random effect models can include time 
invariant covariates.

 Models can be “centered” around group 
means to recreate fixed effects estimates.



Growth Model Approach

 Can model both At and At-1 on the LHS of 
the equation avoiding correlations of error 
and At-1 or other covariates.

 Can model multiple assessment occasions 
over time as a function of time.
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Estimating True Status and Gain 
(an example of an optional approach, based on*)

 Atij = a1tij 1ij + a2tij 2ij +  etij

 Here, for student i, with teacher j, at time 
t, the assessment scale score is denoted 
as Atij. Time in this instance refers to the 
At-1, t = 0, and the At t = 1. 

 This estimates two parameters, student’s 
initial status for the At-1 ( 1ij) and gain on 
the At, ( 2ij) 

*Bryk, A., Thum, Y. M., Easton, J., & Luppescu, S. (1998). 
Assessing school academic productivity: The case of 
Chicago school reform. Social Psychology of Education, 2,
103p142.



The error, etij, is assumed to be 

N~ (0, 2)

Can conceive as the student growth part of 
the model as a measurement model and 
incorporate precision (SEM) to identify the 
model.



 A*
tij = a1

*
tij 1ij + a2

*
tij 2ij + e*

tij

 In this way e*
ijt is distributed N ~ (0,1), 

and 1ij, and 2ij, now estimate a student’s 
true initial status and true gain, 
respectively.  Can estimate teacher effect 
using estimate of true gain.

 * indicates parameter is weighted by 
precision (1/SEMij).



 In order to replicate fixed effects 
estimates group mean center

 A*
tij = a1*

tij 1ij + (a2
*
tij - a2

*
.ij) 2ij + e*

tij

 where etij ~ N(0,1), and a2
*
.ij = St=1,2 

a2
*
tij/2 (2 in this case because we have a 

At and At-1).



 Hence, combined model is:

 A*
tij = 1tij 1ij + 2ij + rij + uj

 where rij = r1a1
* + r2(a2

*
tij - a2

*
.ij), 

and uj = u1a1
* + u2(a2

*
tij - a2

*
.ij).

 Uj is estimated teacher effect



 Advantage of including student covariates:

– Can estimate initial achievement gaps

– Can estimate time to close gap

– These estimates likely too imprecise at the 
teacher level, but are useful at the school 
level



Technical considerations

 Bias 
– Sorting
– Measurement error
– Equating error

 Precision
– Classification categories– e.g. highly effective
– Better precision than existing teacher evaluation 

measures?
multiple assessments

 Reliability
– Ability to detect true between-teacher difference 

 Stability
– Classifications stable over time 
– Multiple year (congruent with policy?)



Effect of Model and Precision



Effect of Model and Precision



Effect of measurement error

From Wright, P, 2008

Results with no measurement error in assessment

Light gray = se

Dark gray = bias



Measurement Error and 
Sorting bias

 Overall, half of the students were free/reduced-price lunch eligible. 

 For individual students, Prob(Pij=1) decreased with increasing true pre-test 
score (ξi). 

 Lower performing students (lower ξi) were more likely to be assigned to a 
poorer teacher. 

From Wright, P, 2008Results with measurement error in assessment

Light gray = se

Dark gray = bias



Practical considerations

 Assessments and scale

 Available data and linkages

– Spill over

– Persistence

 Tested and non-tested subjects

 Components of evaluation system
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