Math 103 Section 2.3: Quadratic Functions and Parabolas

- Parabolas
- Quadratic equations and functions
- Graphs of quadratic functions
- Applications

Quadratic Functions and Expressions

A quadratic function has two forms:

- $f(x)=a x^{2}+b x+c$ (standard form)
- $f(x)=a(x-h)^{2}+k$ (vertex-axis form)

The graph of a quadratic function is a parabola. It is easy to graph a quadratic function if it is expressed in the vertex-axis form.

Graphing a quadratic function

$$
y=-\frac{1}{3}(x-2)^{2}+4
$$

The vertex is the point at $(2,4)$
The axis of symmetry is the vertical line $x=2$

Graphing a quadratic function

The vertex is the point at
The axis of symmetry is the vertical line

Graphing a quadratic function

The general case

$$
y=a(x-h)^{2}+k
$$

The vertex is the point at (h, k)
The axis of symmetry is the vertical line If $a>0$, the parabola opens upward. If $a<0$, the parabola opens downward.

Questions:

- Does the graph of $f(x)=5(x-1)^{2}+8$ open upward or downward?
- Does the graph of $f(x)=\frac{3}{7}(x+2)^{2}+9$ open upward or downward?
- What is the equation for the axis of symmetry for the graph of $f(x)=5(x-1)^{2}+8$?
- What are the coordinates of the vertex of the graph of $f(x)=$ $\frac{3}{7}(x+2)^{2}+9 ?$

Completing the square

How to change the standard form for the function into the vertexaxis form.

Example: $f(x)=x^{2}-6 x+10$

Change into vertex-axis form.

$$
\begin{aligned}
f(x) & =x^{2}-6 x+10 \\
& =\left(x^{2}-6 x+\quad\right)+10- \\
& =(x-3)^{2}+
\end{aligned}
$$

Vertex:

Opens:

Completing the square

Problem: Change to vertex-axis form by completing the square: $f(x)=x^{2}+4 x-5$
$f(x)=$

Vertex:
Opens:

Completing the square

Problem: Change to vertex-axis form by completing the square:
$f(x)=-x^{2}-10 x+1$
$f(x)=$

Vertex:

Opens:

Completing the square

Problem: Change to vertex-axis form by completing the square: $f(x)=3 x^{2}+6 x+1$
$f(x)=$

Vertex:
Opens:

Completing the square

Problem: Change to vertex-axis form by completing the square:
$f(x)=5 x^{2}-30 x+11$
$f(x)=$

Vertex:
Opens:

The quadratic formula

The general quadratic function:

$$
f(x)=a x^{2}+b x+c
$$

The quadratic formula tells you the solutions to $f(x)=0$, which is the same as locating the x-intercepts on the graph:

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example: Solve

$$
2 x^{2}-5 x-3=0
$$

for x.

$$
\begin{gathered}
a=2, \quad b=-5, c=-3 \\
x=\frac{5 \pm \sqrt{5^{2}-4(2)(-3)}}{2(2)}=\frac{5 \pm \sqrt{49}}{4}=\frac{5 \pm 7}{4}
\end{gathered}
$$

So $x=3$ and $x=1 / 2$ are the solutions.

The quadratic formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Example: Solve

$$
x^{2}-5 x-5=0
$$

for x.

$$
a=\quad, \quad b=\quad, c=
$$

