4.5 Inverse of a Square Matrix

In this section, we will learn how to find an inverse of a square matrix (if it exists) and learn the definition of the identity matrix.

Identity Matrix for Multiplication:

- The number 1 is called the multiplicative identity for real numbers: $a(1)=a$
For example 5(1)=5
- In the set of $n x n$ matrices we have a multiplicative inverse also: $A I=A=I A$
- $2 x 2$ case
$\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right)=$

$$
\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=
$$

Identity matrices
 - 3×3 identity matrix
 $$
\left[\begin{array}{lll} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{array}\right]
$$

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right) \cdot\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=
$$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right)=
$$

Inverse of a real number

- All real numbers (excluding 0) have an inverse. $a \cdot \frac{1}{a}=1$
- For example $5 \cdot \frac{1}{5}=1$

What about matrices?

- Some (not all) square matrices also have matrix inverses

$$
\begin{aligned}
& \left(\begin{array}{ll}
1 & 3 \\
1 & 2
\end{array}\right)\left(\begin{array}{cc}
-2 & 3 \\
1 & -1
\end{array}\right)= \\
& \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)=
\end{aligned}
$$

Matrix Inverses

- Some (not all) square matrices also have matrix inverses
\square If the inverse of a matrix A , exists, we call it $\quad A^{-1}$
- Then,

$$
A \cdot A^{-1}=A^{-1} \cdot A=I_{n}
$$

Inverse of a 2×2 matrix

\square There is a simple procedure to find the inverse of a two by two matrix. This procedure only works for the 2×2 case.

An example will be used to illustrate the procedure:

A simple procedure to find the inverse of a $\mathbf{2 \times 2}$ matrix.

- This procedure only works for the $\mathbf{2 x} 2$ case.
- Find the inverse of

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

- $\operatorname{Det}(A)=$ difference of product of diagonal elements $=a_{11} a_{22}-a_{21} a_{12}$
- In order for the inverse of a 2×2 matrix to exist, $\operatorname{Det}(\mathrm{A})$ cannot equal to zero.
- If $\operatorname{Det}(A)=0$, then we conclude the inverse does not exist and we stop all calculations.
- If $\operatorname{Det}(A)$ is non-zero then we proceed:

$$
A^{-1}=\frac{1}{\operatorname{Det}(A)}\left(\begin{array}{cc}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right)
$$

Inverse of a two by two matrix $\left[\begin{array}{ll}2 & 3 \\ 1 & 2\end{array}\right]$

General procedure to find the inverse matrix

\square We use a more general procedure to find the inverse of a 3×3 matrix.

Problem: Find the inverse of the matrix

$$
\left[\begin{array}{ccc}
1 & -1 & 3 \\
2 & 1 & 2 \\
-2 & -2 & 1
\end{array}\right]
$$

Steps to find the inverse of any matrix

1. Augment this matrix with the 3×3 identity matrix.
2. Use elementary row operations to transform the matrix on the left side of the vertical line to the 3×3 identity matrix. The row operation is used for the entire row so that the matrix on the right hand side of the vertical line will also change.
3. When the matrix on the left is transformed to the 3×3 identity matrix, the matrix on the right of the vertical line is the inverse.

Procedure

Final result

The inverse matrix

$\square \quad$ The inverse matrix appears on the right hand side of the vertical line and is displayed below.

$$
\left[\begin{array}{rrr}
1 & -1 & -1 \\
-\frac{6}{5} & \frac{7}{5} & \frac{4}{5} \\
-\frac{2}{5} & \frac{4}{5} & \frac{3}{5}
\end{array}\right]
$$

