4.4 Matrices: Basic Operations

-Addition and subtraction of matrices
-Product of a number k and a matrix M
-Matrix Product.

Addition and Subtraction of matrices

- To add or subtract matrices, they must be of the same size mxn.
- To add matrices of the same size, add their corresponding entries.

$$
A+B=\left[a_{i j}+b_{i j}\right] \quad\left(\begin{array}{ll}
1 & 2 \\
5 & 2
\end{array}\right)+\left(\begin{array}{ll}
4 & 5 \\
9 & 1
\end{array}\right)=
$$

- To subtract matrices of the same order, subtract their corresponding entries. The general rule is as follows using mathematical notation:

$$
A-B=\left[a_{i j}-b_{i j}\right] \quad\left(\begin{array}{ll}
1 & 2 \\
5 & 2
\end{array}\right)-\left(\begin{array}{ll}
4 & 5 \\
9 & 1
\end{array}\right)=
$$

More examples:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
4 & -3 & 1 \\
0 & 5 & -2 \\
5 & -6 & 0
\end{array}\right]+\left[\begin{array}{ccc}
-1 & 2 & 3 \\
6 & -7 & 9 \\
0 & -4 & 8
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
4 & -3 & 1 \\
0 & 5 & -2 \\
5 & -6 & 0
\end{array}\right]-\left[\begin{array}{ccc}
-1 & 2 & 3 \\
6 & -7 & 9 \\
0 & -4 & 8
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
4 & -3 & 1 \\
0 & 5 & -2 \\
5 & -6 & 0
\end{array}\right]-\left[\begin{array}{ll}
1 & 5 \\
3 & 7 \\
1 & 2
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 6 & 3
\end{array}\right]-\left[\begin{array}{lll}
-2 & 3 & 1
\end{array}\right]}
\end{aligned}
$$

Scalar Multiplication

- The scalar product of a number k and a matrix \mathbf{A} is the matrix denoted by $k \mathbf{A}$, obtained by multiplying each entry of \mathbf{A} by the number k.
- The number k is called a scalar.

$$
k A=\left[k a_{i j}\right]
$$

- Example:
$(-1)\left[\begin{array}{ccc}-1 & 2 & 3 \\ 6 & -7 & 9 \\ 0 & -4 & 8\end{array}\right]$

More Examples of scalar multiplication \& addition:

$\left[\begin{array}{ccc}-1 & 2 & 3 \\ 6 & -7 & 9 \\ 0 & -4 & 8\end{array}\right]+3\left[\begin{array}{ccc}1 & 4 & 2 \\ 0 & 4 & 1 \\ 2 & 5 & -1\end{array}\right]=$
(2) $\left[\begin{array}{ccc}-1 & 2 & 3 \\ 6 & -7 & 9 \\ 0 & -4 & 8\end{array}\right]+(0)\left[\begin{array}{ccc}1 & 4 & 2 \\ 0 & 4 & 1 \\ 2 & 5 & -1\end{array}\right]=$

Alternate definition of subtraction of matrices:

- The definition of subtract of two real numbers a and b is
$a-b=a+(-1) b$
i.e. a plus negative b.
- We can define subtraction of matrices similarly:

If A and B are two matrices of the same dimensions, then
$A-B=A+(-1) B$,
$\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]-\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]+(-1)\left[\begin{array}{ll}5 & 6 \\ 7 & 8\end{array}\right]=$

Matrix product

- The method of multiplication of matrices is not as intuitive and may seem strange, although this method is extremely useful in many mathematical applications.
- Matrix multiplication was introduced by an English mathematician named Arthur Cayley (1821-1895).
- We will see shortly how matrix multiplication can be used to solve systems of linear equations.

Row by column multiplication

- 1X4 row matrix multiplied by a 4×1 column matrix: Notice the manner in which corresponding entries of each matrix are multiplied:
$\left(\begin{array}{llll}1 & 2 & 3 & 4\end{array}\right)\left(\begin{array}{l}5 \\ 6 \\ 7 \\ 8\end{array}\right)=1 \cdot 5+2 \cdot 6+3 \cdot 7+4 \cdot 8=70$
$\left(\begin{array}{llll}4 & 2 & 3 & 1\end{array}\right)\left(\begin{array}{l}6 \\ 3 \\ 5 \\ 2\end{array}\right)=$

Row by column multiplication

$1 X n$ row matrix multiplied by a $n X 1$ column matrix:

$$
\left(\begin{array}{llll}
a_{11} & a_{12} & \ldots & a_{1 n}
\end{array}\right)\left(\begin{array}{c}
b_{11} \\
b_{21} \\
\vdots \\
b_{n 1}
\end{array}\right)=
$$

Revenue of a car dealer

- A car dealer sells four model types: A,B,C,D. On a given week, this dealer sold 10 cars of model A, 5 of model B, 8 of model C and 3 of model D . The selling prices of each automobile are respectively $\$ 12,500, \$ 11,800, \$ 15,900$ and $\$ 25,300$. Represent the data using matrices and use matrix multiplication to find the total revenue.

Solution using matrix multiplication

- We represent the number of each model sold using a row matrix (4X1) and we use a 1X4 column matrix to represent the sales price of each model. When a 4 X 1 matrix is multiplied by a 1 X 4 matrix, the result is a 1 X 1 matrix of a single number.

$$
\left[\begin{array}{llll}
10 & 5 & 8 & 3
\end{array}\right]\left[\begin{array}{l}
12,500 \\
11,800 \\
15,900 \\
25,300
\end{array}\right]=[10(12,500)+5(11,800)+8(15,900)+3(25,300)]=[387,100]
$$

Matrix Product

- If \mathbf{A} is an $m \times p$ matrix and \mathbf{B} is a $p \times n$ matrix, the matrix product of A and B denoted by $A B$ is an $m \times n$ matrix whose element in the ith row and j th column is the real number obtained from the product of the Ith row of \mathbf{A} and the jth column of B.
- If the number of columns of \mathbf{A} does not equal the number of rows of B, the matrix product $A B$ is not defined.

$$
\left(\begin{array}{cccc}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right)\left(\begin{array}{l}
1 \\
4 \\
7 \\
10
\end{array}\right]\left(\begin{array}{l}
2 \\
5 \\
8 \\
11
\end{array}\right)
$$

Undefined matrix multiplication

Why is this matrix multiplication not defined?
$\left(\begin{array}{ccc}1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \\ 10 & 11 & 12\end{array}\right)\left(\begin{array}{llll}1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8\end{array}\right) \quad$ is not defined

More examples:

$$
\left[\begin{array}{ccc}
3 & 1 & -1 \\
2 & 0 & 3
\end{array}\right]\left[\begin{array}{cc}
1 & 6 \\
3 & -5 \\
-2 & 4
\end{array}\right]
$$

Is Matrix Multiplication Commutative?

$$
\left[\begin{array}{cc}
1 & 6 \\
3 & -5 \\
-2 & 4
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & -1 \\
2 & 0 & 3
\end{array}\right]
$$

Practical application

- Suppose you a business owner and sell clothing. The following represents the number of items sold and the cost for each item: Use matrix operations to determine the total revenue over the two days:
- Monday: 3 T-shirts at $\$ 10$ each, 4 hats at $\$ 15$ each, and 1 pair of shorts at $\$ 20$.
Tuesday: 4 T-shirts at $\$ 10$ each, 2 hats at $\$ 15$ each, and 3 pairs of shorts at $\$ 20$.

Solution of practical application

- Represent the information using two matrices: The product of the two matrices give the total revenue:

- Then your total revenue for the two days is =[llll 110 130 Price Quantity=Revenue

Practical application

- A company with manufacturing plants located in Mass. And Virginia has labor-hour and wage requirements for the manufacture of three types of boats: What is MN?

	Cutting	Assemb.	Package.			MA	VA	
1 man boat	${ }_{.}^{\text {Dept. }}$	Dept.	$.2$			$(17$	14	Cutting Dept.
2 man boat		$.9$.3	$=M$	$N=$	12	10	Assemb. Dept.
3 man boat	(1.5	1.2	.4			10	9	Package. Dept.

