4.3 Gauss Jordan Elimination

- Any linear system must have exactly one solution, no solution, or an infinite number of solutions.
- Just as in the 2X2 case:
- the term consistent and independent is used to describe a system with a unique solution,
- consistent and dependent is used for a system with an infinite number of solutions.
- inconsistent is used to describe a system with no solution,

Matrix representations of consistent, inconsistent and dependent systems

- The following matrices represent systems of three linear equations in three unknowns illustrate the three different cases:
- Case I : consistent $\left(\begin{array}{lll|l}1 & 0 & 0 & 3 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 5\end{array}\right)$
- Case 2: Inconsistent case: $\left(\begin{array}{lll|l}1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0\end{array}\right)$
- Case 3: Dependent system $\left(\begin{array}{lll|l}1 & 2 & 3 & 4 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right)$

Reduced row echelon form

A matrix is said to be in reduced row echelon form or, more simply, in reduced form, if :

1. Each row consisting entirely of zeros is below any row having at least one non-zero element.
2. The leftmost nonzero element in each row is 1 .
3. All other elements in the column containing the leftmost 1 of a given row are zeros.
4. The leftmost 1 in any row is to the right of the leftmost 1 in the row above.

Which is i reduced row echelon form?

$$
\begin{array}{lc}
\left(\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
0 & 1 & 0 & 4 \\
0 & 0 & 1 & 5
\end{array}\right) \\
\left(\begin{array}{lll|l}
1 & 2 & 3 & 4 \\
0 & 0 & 1 & 6 \\
0 & 0 & 0 & 0
\end{array}\right) & \left(\begin{array}{lll|l}
1 & 0 & 0 & 3 \\
0 & 0 & 0 & 4 \\
0 & 0 & 1 & 5
\end{array}\right) \\
\left(\begin{array}{lll|l}
1 & 2 & 3 & 4 \\
0 & 0 & 0 & 6 \\
0 & 0 & 0 & 0
\end{array}\right) & \left(\begin{array}{llll|l}
1 & 3 & 0 & 0 & -2 \\
0 & 0 & 1 & 0 & 7 \\
0 & 0 & 0 & 1 & 8
\end{array}\right) \\
& \left(\begin{array}{lll|l}
1 & 2 & 3 & 4 \\
0 & 1 & 0 & 6 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{array}
$$

Solving a system using Gauss-Jordan Elimination

Solve:

$$
\begin{aligned}
& x+y-z=-2 \\
& 2 x-y+z=5 \\
& -x+2 y+2 z=1
\end{aligned}
$$

Solving a system using Gauss-Jordan Elimination

Solve:

$$
\begin{aligned}
& x+y-z=-2 \\
& 2 x-y+z=5 \\
& -x+2 y+2 z=1
\end{aligned}
$$

Solving a system using Gauss-Jordan Elimination

Solve:

$$
\begin{aligned}
& x+y-z=-2 \\
& 2 x-y+z=5 \\
& -x+2 y+2 z=1
\end{aligned}
$$

Karl Frederick Gauss:

- At the age of seven, Carl Friedrich Gauss started elementary school, and his potential was noticed almost immediately. His teacher, Büttner, and his assistant, Martin Bartels, were amazed when Gauss summed the integers from 1 to 100 instantly by spotting that the sum was 50 pairs of numbers each pair summing to 101.

Example 2

$$
\begin{aligned}
& 3 x-4 y+4 z=7 \\
& x-y-2 z=2 \\
& 2 x-3 y+6 z=5
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& 3 x-4 y+4 z=7 \\
& x-y-2 z=2 \\
& 2 x-3 y+6 z=5
\end{aligned}
$$

Example 2

$$
\begin{aligned}
& 3 x-4 y+4 z=7 \\
& x-y-2 z=2 \\
& 2 x-3 y+6 z=5
\end{aligned}
$$

Representation of a solution of a dependent system

$$
\left(\begin{array}{ccc|c}
1 & -1 & -2 & 2 \\
0 & -1 & 10 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

Example 3

A company that rents small moving trucks wants to purchase 16 trucks with a combined capacity of 19,200 cubic feet. Three different types of trucks are available: a cargo van with a capacity of 300 cubic feet, a 15 -foot truck with a capacity of 900 cubic feet, and a 24-foot truck with a capacity of 1,500 cubic feet. How many of each type of truck should the company purchase?

