Three ways to compute future value

Simple interest \(A = P(1 + rt) \)

Compound interest \(A = P(1 + i)^n \)

Continuous compounded interest \(A = Pe^{rt} \)

These formulas can also be used to compute the present value required to attain a given future value.

Example: What present value \(P \) is required for a future value \(F \) of $4,000? Interest is compounded semiannually for 5 years at a rate of 8%.

Solve the equation for \(P \):

\[
4000 = P(1 + 0.08/2)^{10} \\
= P(1.48024) \\
P = 4000/1.48024 \\
= 2702.26
\]

Summary: A present value of $2702.26 is required for a future value of $4000 if interest is compounded semiannually for 5 years at a rate of 8%.
Solving the future/present value formula for time t

Example: Use the graph to solve the equation for the number of years t:

$$3000 = 1000e^{(.10)t}$$

![Graph showing future value and years]

Solving the future/present value formula for time t

Use logarithms graph to solve the equation for the number of years t:

$$3000 = 1000e^{(.10)t}$$

$$e^{(.10)t} = 3$$
$$\ln(e^{(.10)t}) = \ln(3)$$
$$(.10)t = \ln(3)$$
$$t = \ln(3)/.10$$
$$t = 10.98612$$

Summary: It takes 10.98612 years for a present value of $1000 to grow to a future value of $3000 at a rate of 10% compounded continuously.
Solving the future/present value formula for time t

Use logarithms graph to solve the equation for the number of years t:

$$5000 = 1200e^{(.08)t}$$

Solving the future/present value formula for time t

Use logarithms graph to solve the equation for the number of years t:

$$5000 = 1200e^{(.08)t}$$

$$2500 = 1000e^{(.09)t}$$

$$3600 = 1000e^{(.05)t}$$
Two facts about the natural logarithm, ln:

\[\ln(e^x) = x \] \hspace{1cm} (1)
\[\ln(a^x) = x \ln(a) \] \hspace{1cm} (2)

<table>
<thead>
<tr>
<th>Fact (1):</th>
<th>Fact (2):</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\ln(e^{.03}t) = .03t)</td>
<td>(\ln((1.02)^n) = n \ln(1.02))</td>
</tr>
<tr>
<td>(\ln(e^{.09}t) = .09t)</td>
<td>(\ln((1.10)^n) = n \ln(1.10))</td>
</tr>
<tr>
<td>(\ln(e^{.06}t) =)</td>
<td>(\ln((1.045)^n) = n \ln(1.045))</td>
</tr>
<tr>
<td>(\ln(e^{.10}t) = .10t)</td>
<td>(\ln((1.01)^n) = n \ln(1.01))</td>
</tr>
</tbody>
</table>

How to use Fact (2):

Compound Interest Formula: \(A = P(1 + i)^n \)

Problem: Deposit $100 into an account earning 4.5% interest compounded annually. How many years will it take to have a future value of $200? Solve for \(n \):

\[200 = 100(1 + .045)^n. \]

\[(1.045)^n = 2 \]
\[\ln((1.045)^n) = \ln(2) \]
\[n \ln(1.045) = \ln(2) \]
\[n = \frac{\ln(2)}{\ln(1.045)} \]
\[n = \approx 15.747302 \]

Summary: It takes 15.75 years to have a future value of $200 if a present value of $100 earns 4.5% interest compounded annually.

How to use Fact (2):

Compound Interest Formula: \(A = P(1 + i)^n \)

Problem: Deposit $100 into an account earning 9% interest compounded semiannually. How many years will it take to have a future value of $200? Solve for \(n \):

\[
200 = 100(1 + 0.045)^n.
\]

This is the same equation as in the previous slide. The answer is still \(n = 15.747302 \), but it must be interpreted differently. \(n \) is the number of compounding periods. \(n \) isn’t always the number of years. In this example, interest is compounded semiannually. So 15.747302 periods is \(15.747302/2 = 7.873651 \) years.

Summary: It takes 7.87 years to have a future value of $200 if a present value of $100 earns 9% interest compounded semiannually.

Example: The present value is $200. Interest is compounded quarterly at a rate of 10%. How many years does it take for a future value of $500?

Compound interest formula: \(A = P(1 + i)^n \)

\(i = 0.10/4 = 0.025 \) Solve for \(n \):

\[
200(1.025)^n = 500
\]

\[
(1.025)^n = 2.5
\]

\[
\ln((1.025)^n) = \ln(2.5)
\]

\[
n \ln(1.025) = \ln(2.5)
\]

\[
n = \ln(2.5)/\ln(1.025)
\]

\[
n = 37.107890
\]

There are 37.108 periods. Each period is a quarter (of a year). So that’s 37.108/4 = 9.277 years.

Summary: It takes 9.277 years to have a future value of $500 if a present value of $200 earns 10% compounded quarterly.
Problem: The present value is $1200. Interest is compounded monthly at a rate of 8%. How many years does it take for a future value of $2000?

Problem: The present value is $1800. Interest is compounded quarterly at a rate of 12%. How many years does it take for a future value of $3200?