Math 103 Section 3.1, 3.2: Math of Finance

- simple interest
- compound interest

Simple Interest:

$$A = P(1 + rt)$$

- \bullet A: amount, or future value
- P: principal, or present value
- r: annual simple interest rate (decimal form)
- t time in years.

Example:

$$A = P(1 + rt)$$

Find the total amount due on a loan of \$1200 at 8% simple interest at the end of 6 months.

A = unknown

P = 1200

r = .08

t = .5 (Note: 6 months is half a year.)

Then

$$A = 1200(1 + (.08)(.5)) = 1200(1 + .04) = 1200(1.04) = 1248$$

Summary: The total amount due (future value) on a loan of \$1200 at 8% simple interest at the end of 6 months is \$1248.

2

Example:

$$A = P(1 + rt)$$

Find the total amount due on a loan of \$6,000 at 12% simple interest at the end of 9 months.

A = unknown

P =

r =

t = (Note: 9 months is 3/4 (0.75) of a year.)

Summary:

Warmup for Compound Interest:

Problem: That new atomic cell phone you've always wanted is marked at a price of \$100. But today only, the phone store is giving a 30% discount. The sales tax is 8.25%.

You jump on it and ask the cashier to ring up the sale. The cashier does something strange. He adds in the sales tax on the full price of \$100 and then subtracts the discount of 30%. You expected him to take the discount off first and then add in the sales tax? Does it matter which way he computes the final price?

4

Warmup for Compound Interest:

Sales tax rate: 8.25%, discount: 30% off.

Method I: add sales tax first, then subtract discount.

Method II: subtract discount first, then add sales tax.

Warmup for Compound Interest:

Sales tax rate: 8.25%, discount: 30% off.

Another way to look at the problem: multiply, don't add.

Method I: add sales tax first, then subtract discount.

Method II: subtract discount first, then add sales tax.

6

Compound Interest: An example

Deposit \$100.00 into an account earning 5% compounded annually (each year). How much will you have after 10 years?

Year	\$Interest	\$Interest \$Balance	
	\$	\$100.00	
1	\$5.00	\$105.00	
2	\$5.25	\$110.25	
3	\$5.51	\$115.76	
4	\$5,79	\$121.55	
5	\$6.08	\$127.63	
6	\$6.38	\$134.01	
7	\$6.70	\$140.71	
8	\$7.04	\$147.75	
9	\$7.39	\$155.13	
10	\$7.76	\$162.89	

Compound Interest: An example

Deposit \$100.00 into an account earning 5% compounded annually (each year). How much will you have after 10 years?

$$A = 100(1.05)^{10} = 162.89$$

Summary: You will have \$162.89 after 10 years.

8

Compound Interest:

$$A = P(1+i)^n$$

- A: amount, or future value
- P: principal, or present value
- r: annual nominal rate
- ullet m: number of compounding periods per year
- i = r/m: rate per compounding period
- \bullet *n* number of compounding periods.

Compound Interest:

Example: Invest \$1200 (principal, present value) at an annual rate of 6% compounded semi-annually. How much will you have (future value) at the end of 10 years?

A amount, or future value P=1200 principal, or present value r=.06 annual nominal rate m=2 number of compounding periods per year i=.03=.06/2 rate per compounding period 20=10(2) number of compounding periods. $A=1200(1+.03)^{20}=1200(1.03)^{20}=2167.33$

Summary: You will have \$2167.33 after ten years.

Compound Interest:

Example: Invest \$45,000 (principal, present value) at an annual rate of 8% compounded quarterly. How much will you have (future value) at the end of 5 years?

A amount, or future value P = principal, or present value r = annual nominal rate m = number of compounding periods per year i = rate per compounding period number of compounding periods.

A =

Summary:			