103 Section 3.1, 3.2: Math of Finance continued

- simple interest
- compound interest
- continuous compounded interest

Three ways to compute future value

Simple interest
Compound interest
Continuous compounded interest $A=P e^{r t}$

Continuous compounded interest

Example: You deposit $\$ 1000$ into an account earning 12% for 10 years. The table shows the future value for various compounding periods:

\quad periods per year future value	$=\$$	
1 yearly	$1000(1.12)^{10}$	$=\$ 3105.85$
2 semiannually	$1000(1.06)^{20}$	$=\$ 3207.14$
4 quarterly	$1000(1.03)^{40}$	$=\$ 3262.04$
12 monthly	$1000(1.01)^{120}$	$=\$ 3300.39$
365 daily	$1000(1+.12 / 365)^{3650}=\$ 3319.46$	

Is there any limit to how large the future value can be? Yes, the largest future value from more frequent compounding is $\$ 3320.12$.

Continuous compounded interest

Formula for continuous compounded interest:

$$
A=P e^{r t}
$$

r is the annual rate
t is the number of years.

For a rate of 12% for 10 years, the formula gives

$$
1000 e^{.12 \times 10}=1000 e^{1.20}=3320.12
$$

$$
A=P e^{r t}
$$

Problem: You deposit $\$ 12,000$ into an account earning 10% compounded continuously. How much will you have at the end of 25 years?

Problem: You deposit \$650 into an account earning 4\% compounded continuously. How much will you have at the end of 11 years?

Comparisons

Compound interest

$$
A=P(1+i)^{n}
$$

Continuous compounded interest $A=P e^{r t}$

Problem: You deposit \$800 into an account earning 9\% interest for 6 years. What is the future value if
a. interest is compounded quarterly?
b. continuously?
c. Which is better?
a.
b.

Finding present value given future value

Example: How much money do you have to invest to have $\$ 100,000$ in 10 years? The rate is 8% compounded continuously:

In this problem we use $A=P e^{r t}$ with $r=.08$ and $t=10$. We know $A=100,000$ (future value) and want to know P (present value).

$$
100,000=P e^{.08 \times 10}=P e^{.8}=P \times 2.225541
$$

So

$$
P=\frac{100,000}{2.225541}=44932.90
$$

Summary: To have a future value of $\$ 100,000$ in 10 years, you must invest \$44,932.90.

Finding present value given future value

Example: How much money do you have to invest to have $\$ 45,200$ in 5 years? The rate is 6% compounded monthly:

In this problem we use $A=P(1+i)^{n}$ with
$r=$
$t=$
$A=\quad$ (future value)

Summary:

Finding present value given future value

Example: How much money do you have to invest to have $\$ 5,100$ in 12 years? The rate is 7.5% compounded quarterly:

In this problem we use $A=P(1+i)^{n}$ with
$r=$
$t=$
$A=\quad$ (future value)

Summary:

Finding present value given future value

Example: How much money do you have to invest to have $\$ 140,000$ in 15 years? The rate is 6\% compounded continuously:

In this problem we use $A=P e^{r t}$ with
$r=$
$t=$
$A=\quad$ (future value)

Summary:

More comparisions

Problem: You are going to invest some money for two years. Bank A offers to give 5\% interest for the first year and 15\% interest for the second year. Bank B offers to give 10\% interest compounded yearly.

Which is better?

More comparisions

Problem: You are going to invest some money for one year. Bank A offers to give 6.2% interest compounded annually. Bank B offers to give 6.1\% interest compounded monthly.

Which is better?

The exponential curve

You deposit \$1.00 earning 8\% interest compounded continuously for t years. So the amount $A(t)$ you have is a function of the time t the money earns interest.

$$
A(t)=(1.00) e^{.08 t}=e^{.08 t}
$$

