WARM UP EXERCSE

Roots, zeros, and x-intercepts.

$$f(x) = x^2 - 25$$
$$f(x) = x^2 + 25$$

 $f(x) = x^3 - 25x$

 $f(x) = \text{polynomial}, f(a) = 0 \implies f(x) = (x - a)g(x)^{-1}$

§ 2-3 Polynomials and Rational Functions

Students will learn about:

- •Polynomial functions
 - -Behavior & graphs
 - -Root approximation
- •Rational functions:
 - -Behavior & graphs

Examples	
<i>x</i> goes to infinity?	
$f(x) = x^3 - 2$	
$h(x) = (x)^2(x-1)$	
g(x) = (x-1)(x-2)(x-3)	
$j(x) = (x - 1)(x^2 + 1)$	
x gets to negative infinity? $f(x) = x^3 - 2$	
$h(x) = (x)^2(x-1)$	
g(x) = (x-1)(x-2)(x-3)	
$j(x) = (x - 1)(x^2 + 1)$	
How many intercepts? $f(x) = x^3 - 2$	
$h(x) = (x)^2(x-1)$	
g(x) = (x-1)(x-2)(x-3)	
$j(x) = (x - 1)(x^2 + 1)$	
How many turning points?	
$f(x) = x^3 - 2$	
$h(x) = (x)^2(x-1)$	
g(x) = (x-1)(x-2)(x-3)	6
$j(x) = (x - 1)(x^2 + 1)$	

