WARM UP EXERCSE

Roots, zeros, and x-intercepts.
$f(x)=x^{2}-25$
$f(x)=x^{2}+25$
$f(x)=x^{3}-25 x$
$f(x)=$ polynomial, $f(a)=0 \Rightarrow f(x)=(x-a) g(x)^{1}$

§ 2-3 Polynomials and Rational Functions

Students will learn about:
-Polynomial functions
-Behavior \& graphs
-Root approximation
-Rational functions:
-Behavior \& graphs

Examples	
$f(x)=(x-3)^{3}+2$	
$=$	
$f(x)=x^{3}-4 x$	Behavior as x gets big?
$f(x)=x^{4}-6 x^{2}$	How many interepts? How many turning points?
$f(x)=x^{5}-5 x^{3}+4 x+1$	
$f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x^{1}+a_{0}$	

Graphs of examples

Number of intercepts?
Number of turning points?
Behavior as x gets big?
Behavior as x goes to negative infinity?
How do your answers change if we shift these left or right?
How do your answers change if we shift these up or down?

Graphs of examples

Number of intercepts?
Number of turning points?
Behavior as x gets big?
Behavior as x goes to negative infinity?
How do your answers change if we shift these left or right? How do your answers change if we shift these up or down?

Examples

x goes to infinity?
$f(x)=x^{3}-2$
$h(x)=(x)^{2}(x-1)$
$g(x)=(x-1)(x-2)(x-3)$
$j(x)=(x-1)\left(x^{2}+1\right)$
x gets to negative infinity?
$f(x)=x^{3}-2$
$h(x)=(x)^{2}(x-1)$
$g(x)=(x-1)(x-2)(x-3)$
$j(x)=(x-1)\left(x^{2}+1\right)$
How many intercepts?
$f(x)=x^{3}-2$
$h(x)=(x)^{2}(x-1)$
$g(x)=(x-1)(x-2)(x-3)$
$j(x)=(x-1)\left(x^{2}+1\right)$
How many turning points?
$f(x)=x^{3}-2$
$h(x)=(x)^{2}(x-1)$
$g(x)=(x-1)(x-2)(x-3)$
$j(x)=(x-1)\left(x^{2}+1\right)$

In General
 $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x^{1}+a_{0}$

Degree n EVEN:
Behavior as x goes to infinity?
Behavior as x gets to negative infinity?
How many intercepts? Between 0 and n
How many turning points? Between 1 and $n-1$

Degree n Odd:
Behavior as x goes to infinity?
Behavior as x gets to negative infinity?
How many intercepts?
How many turning points?

Rational Function Examples

Graph the following:

$$
f(x)=\frac{1}{x}
$$

Domain
Range
$\lim _{x \rightarrow \infty} f(x)=$
$\lim _{x \rightarrow-\infty} f(x)=$
$\lim _{x^{t} \rightarrow 2} f(x)=$
$\lim _{x \rightarrow 2} f(x)=$

Rational Function Examples

Graph the following:
$g(x)=\frac{1}{x}+3=$
Domain
Range
$\lim _{x \rightarrow \infty} f(x)=$
$\lim _{x \rightarrow-\infty} f(x)=$
Remark: Limits to infinity in general:
$\lim _{x \rightarrow \infty} \frac{a x+b}{c x+b}=\lim _{x \rightarrow \infty} \frac{a x}{c x+b}+\frac{b}{c x+b}=$
How about as x approaches 0 ?
$g(1 / 10)=$
$g(-1 / 10)=$
$g(1 / 100)=$
$g(-1 / 100)=$
$\lim _{x^{+} \rightarrow 0} f(x)=$ as x approaches 0 from the right $f(x)$ approaches \qquad
$\lim _{x \rightarrow 0} f(x)=$ as x approaches 0 from the left $f(x)$ approaches \qquad

Rational Function Examples

Graph the following:

$$
f(x)=\frac{1}{x-2}
$$

Domain
Range
$\lim _{x \rightarrow \infty} f(x)=$
$\lim _{x \rightarrow-\infty} f(x)=$
How about as x approaches 2?

$$
\begin{array}{ll}
f(1.9)= & f(2.1)= \\
f(1.99) & f(2.01)
\end{array}
$$

[^0]
Rational Function Examples

Graph the following:
$g(x)=\frac{1}{2(x-1)}+3=$
Domain
Range
$\lim _{x \rightarrow \infty} f(x)=$
$\lim _{x \rightarrow-\infty} f(x)=$
$\lim _{x^{+} \rightarrow} f(x)=$
$\lim _{x^{-} \rightarrow} f(x)=$

Rational Functions

- Definition: A Rational function is a quotient of two polynomials, $P(x)$ and $Q(x): R(x)=P(x) / Q(x)$.

Example: Let $P(x)=x+5$ and
$Q(x)=x-2$ then
$R(x)=\frac{x+5}{x-2}$
Domain:

Range:
Zeros:
x-intercepts:
y-intercepts:

Graph of rational function

Rational Functions

- Definition: A Rational function is a quotient of two polynomials, $P(x)$ and $Q(x): R(x)=P(x) / Q(x)$. We will focus on $R(x)=\frac{a x+b}{c x+d}$

Domain:

Don't want $\mathrm{cx}+\mathrm{d}=0$. So...
All real numbers except $x=-\mathrm{d} / \mathrm{c}$.
The line $x=-d / c$ is the vertical aspmptote
Range:
$\lim _{x \rightarrow-\infty} f(x)=a / c$
$y=a / c$ is the horizontal asymptote
$\lim _{x \rightarrow \infty} f(x)=a / c \quad$ Range: All real numbers except $\mathrm{y}=\mathrm{a} / \mathrm{c}$.
Zeros: Want $\mathrm{ax}+\mathrm{b}=0$
so zero at $\mathrm{x}=\mathrm{-b} / \mathrm{a}$ (if a not zero)
x-intercepts: $(-b / a, 0)$
y-intercepts: ($0, \mathrm{~b} / \mathrm{d}$)
$\lim _{x^{+} \rightarrow} f(x)=$
$\lim f(x)=$

Example:

$$
f(x)=\frac{3 x+5}{x+1}
$$

Domain:

Range:
$\lim _{x \rightarrow-\infty} f(x)=$
$\lim _{x \rightarrow \infty} f(x)=$
Zeros:
x-intercepts:
y-intercepts:
$\lim _{x \rightarrow \rightarrow} f(x)=$
$\lim _{x \rightarrow-\infty} f(x)=\quad 15$

[^0]: $\lim _{x^{+} \rightarrow 2} f(x)=$
 $\lim _{x \rightarrow 2} f(x)=$

