Math 103 Section 2.2: Elementary Functions and Transformations

1. A beginning library of elementary functions
2. Graphs of elementary functions
3. Shifts and stretches
4. Piecewise -defined functions

Beginning Library

- identity function $f(x)=x$
- absolute value function $f(x)=|x|$
- square function $f(x)=x^{2}$
- square-root function $f(x)=\sqrt{x}$
- piecewise defined functions

Identity and Absolute value functions

Identity function

Absolute-value function
Expression $f(x)=|x|$ or abs (x)
Domain: all numbers $(-\infty, \infty)$
Range: $x \geq 0,[0, \infty)$

3

Square and Square-root functions

Square function	Square-root function
Expression: $f(x)=x^{2}$	Expression: $f(x)=\sqrt{x}$
Domain: all numbers $(-\infty, \infty)$	Domain: $x \geq 0,[0, \infty)$
Range: $x \geq 0,[0, \infty)$	Range: $x \geq 0,[0, \infty)$

Transformations

- vertical translations (shift)

Business shifting up: Suppose x is the number of items you produce and $C(x)$ is the cost to produce x items. If your fixed costs (e.g. rent) increases by $\$ 5$, then the cost curve will shift up 5 units.

- vertical stretch

Business stretching up: Suppose x is the number of items you produce and $C(x)=10 x$ is the cost to produce x items. If your variable costs to produce items (e.g. you are taxed on each unit produced) increases by $\$ 2$, then the cost curve will be stretched up by a factor of 2 .

- horizontal translation (shift)

Business shifting left: Suppose the units on the x-axis are years starting in 2000 (i.e. $x=0$ is the year 2000) and $P(x)$ is your profits for the year. In updating your graphs for your manager you want to have the graph "start" with the year 2002. Then you want to ...

- reflections (lab sessions)

Vertical shift

Vertical shift 5 units up

The graph of $f(x)$ is blue (dark line).

The graph of $f(x)+5$ is red (light line).

The vertical distance between the curves is 5 .

Vertical stretch

Vertical stretch by a factor of 2 :

The graph of $f(x)$ is blue (dark line).

The graph of $2 f(x)$ is red (light line).

The vertical distance from the x-axis of the graph of $2 f(x)$ is twice that of $f(x)$.

Horizontal shift

Horizontal shift two units to the right

The graph of $f(x)$ is blue (dark).

The graph of $f(x-2)$ is red (light).

The horizontal distance between the curves is 2 .

Horizontal shift

Horizontal shift two units to the left

The graph of $h(x)$ is red (light).

The graph of $h(x+2)$ is blue (dark).

The horizontal distance between the curves is 2 .

Practice: Graph these functions

$y=2|x|$

$y=|x+3|$

Practice: Each function corresponds to geometric description

$f(x-5)$	horizontal shift 5 units to the right
$f(x)+7$	
$3 f(x)$	
$f(x-3)-1$	vertical shift 2 units up
	vertical shrink by a factor of $1 / 2$
	horizontal shift 4 units to left

Piecewise defined functions, an example

A car rental agency charges $\$ 30$ per day (or partial day) or $\$ 150$ per week, whichever is least. What is the rental cost $C(x)$ for x days?

Fill in the charges for the values of x :

x	1.0	2.0	2.6	3.0	3.1	4.0	4.2	5.0	6.0	7.0	7.1
$C(x)$											

Example from business continued:

A car rental agency charges $\$ 30$ per day (or partial day) or $\$ 150$ per week, whichever is least. What is the rental cost $C(x)$ for x days?

Fill in the charges for the values of x :

\times	1.0	2.0	2.6	3.0	3.1	4.0	4.2	5.0	6.0	7.0	7.1
$C(x)$	30	60	90	90	120	120	150	150	150	150	180

A car rental agency charges $\$ 30$ per day (or partial day) or $\$ 150$ per week, whichever is least. Graph the cost function $C(x)$.

Example from business $T(x)$ is the tax on taxable income of x.

The federal income tax rate is

Between	But Not Over	Base Tax	Rate	Of the Amount Over
$\$ 0$	$\$ 7,550$	0	10%	$\$ 0.00$
$\$ 7,550$	$\$ 30,650$	$\$ 755.00$	15%	$\$ 7,550$
$\$ 30,650$	$\$ 74,200$	$\$ 4,220.00$	25%	$\$ 30,650$
$\$ 74,200$	$\$ 154,800$	$\$ 15,107.50$	28%	$\$ 74,200$
$\$ 154,800$	$\$ 336,550$	$\$ 37,675.50$	33%	$\$ 154,800$
$\$ 336,550$		$\$ 97,653.00$	35%	$\$ 336,550$

If you have a taxable income of $x=\$ 110,000$, your tax is

$$
\begin{aligned}
T(110,000) & =\text { Base Tax }+(\text { Rate } \times \text { Amount Over }) \\
& =15,107.50+[.28 \times(110,000-74,200)] \\
& =15,107.50+[.28 \times 35,800] \\
& =15,107.50+10,024.00 \\
& =25,131.50
\end{aligned}
$$

The graph of $T(x)$:

Between	But Not Over	Base Tax	Rate	Of the Amount Over
$\$ 0$	$\$ 7,550$	0	10%	$\$ 0.00$
$\$ 7,550$	$\$ 30,650$	$\$ 755.00$	15%	$\$ 7,550$
$\$ 30,650$	$\$ 74,200$	$\$ 4,220.00$	25%	$\$ 30,650$
$\$ 74,200$	$\$ 154,800$	$\$ 15,107.50$	28%	$\$ 74,200$
$\$ 154,800$	$\$ 336,550$	$\$ 37,675.50$	33%	$\$ 154,800$
$\$ 336,550$		$\$ 97,653.00$	35%	$\$ 336,550$

The equations for $T(x)$:

Between	But Not Over	Base Tax	Rate	Of the Amount Over
$\$ 0$	$\$ 7,550$	0	10%	$\$ 0.00$
$\$ 7,550$	$\$ 30,650$	$\$ 755.00$	15%	$\$ 7,550$
$\$ 30,650$	$\$ 74,200$	$\$ 4,220.00$	25%	$\$ 30,650$
$\$ 74,200$	$\$ 154,800$	$\$ 15,107.50$	28%	$\$ 74,200$
$\$ 154,800$	$\$ 336,550$	$\$ 37,675.50$	33%	$\$ 154,800$
$\$ 336,550$		$\$ 97,653.00$	35%	$\$ 336,550$

For income between $\$ 74,200$ and $\$ 154,800$:
Line 4 in the table.
$74200 \leq x \leq 154800$:

The equations for $T(x)$:

Between	But Not Over	Base Tax	Rate	Of the Amount Over
$\$ 0$	$\$ 7,550$	0	10%	$\$ 0.00$
$\$ 7,550$	$\$ 30,650$	$\$ 755.00$	15%	$\$ 7,550$
$\$ 30,650$	$\$ 74,200$	$\$ 4,220.00$	25%	$\$ 30,650$
$\$ 74,200$	$\$ 154,800$	$\$ 15,107.50$	28%	$\$ 74,200$
$\$ 154,800$	$\$ 336,550$	$\$ 37,675.50$	33%	$\$ 154,800$
$\$ 336,550$		$\$ 97,653.00$	35%	$\$ 336,550$

For income between $\$ 30,650$ and $\$ 74,200$:
Line 3 in the table.
$30650 \leq x \leq 74200$:

