WARM UP EXERCSE

A cable company has found that the total number N (in thousands) of subscribers t months after the installation of the system is given by
$\mathrm{N}(\mathrm{t})=200 \mathrm{t} /(\mathrm{t}+5)$
Find N (15) and N ' (15). Write an interpretation of these results.

§11.4 Chain Rule: Power Form

The student will learn about:

-the easy version of the chain rule, -combining different rules of derivation -application

Some examples

$\frac{d}{d x}\left(5 x^{3}\right)^{2}=\frac{d}{d x}\left(25 x^{6}\right)=$
$\frac{d}{d x}\left(5 x^{3}\right)^{2}=\frac{d}{d x}\left(\left(5 x^{3}\right)\left(5 x^{3}\right)\right)=$

$$
\frac{d}{d x}\left(5 x^{3}\right)^{3}=\frac{d}{d x}\left(\left(5 x^{3}\right)^{2}\left(5 x^{3}\right)\right)=
$$

Some examples

$$
\frac{d}{d x}(u(x))^{2}=\frac{d}{d x}((u(x))(u(x)))=
$$

$$
\frac{d}{d x}(u(x))^{3}=\frac{d}{d x}\left((u(x))^{2}(u(x))\right)=
$$

Chain Rule: Power Rule.

Theorem 1. (General Power Rule or easy Chain Rule) If $u(x)$ is a differential function, n is any real number, and

$$
\begin{aligned}
f(x) & =[u(x)]^{n} \\
\text { then } \quad f^{\prime}(x) & =n[u(x)]^{n-1} u^{\prime}(x) \\
& =n u^{n-1} u^{\prime} \\
\text { or } \quad \frac{d}{d x} u^{n} & =n u^{n-1} \frac{d u}{d x}
\end{aligned}
$$

Find the derivative of $y=\left(x^{3}+2\right)^{5}$.

Example 2

Find the derivative of $y=\sqrt{x^{3}+3}$

Example 3: Combining Rules of
Differentiation

Find $f^{\prime}(x)$ if $f(x)=\frac{x^{4}}{(3 x-8)^{2}}$.

Example 4

Let $f(x)=x^{2}(1-x)^{4} ;$ at $x=2$.
Find $f^{\prime}(x)$ and find the equation of the line tangent to the graph of f at the indicated value of x.

Application

The number $f(p)$ of stereo speakers people are willing to buy per week at a price of $\$ p$ is given by
$f(p)=1,000-60(p+25)^{1 / 2}$
for $20 \leq \mathrm{p} \leq 100$.

1. Let $f(p)=1,000-60(p+25)^{1 / 2}$ what is $f(75)$?
2. What does it mean?

Application

The number $f(p)$ of stereo speakers people are willing to buy per week at a price of $\$ p$ is given by
$f(p)=1,000-60(p+25)^{1 / 2}$
for $20 \leq \mathrm{p} \leq 100$.

1. Find $f^{\prime}(p)$
2. Find f'(75).

