WARM UP EXERCISE

Please take derivatives of the following:

$$
y=3 x^{4}-x+4-x^{-1}+x^{2 / 3}-x^{-5}+x^{7 / 5}
$$

§10.7 Marginal Analysis in Business and Economics

The student will learn about:
Marginal cost, revenue, and profit Applications

Marginal Cost

Margin refers to an instantaneous rate of change, that is, a derivative. If x is the number of units of a product produced in some time interval, then
$C(x)$ is the total cost of producing x items
$C(x+1)$ is the cost of producing $\mathrm{x}+1$ items.
Then the exact cost of producing the $\mathrm{x}+1^{\text {st }}$ item is
$C(x+1)-C(x)$
The marginal cost is
$C^{\prime}(x)$

Example 1

The total cost of producing x electric guitars is

$$
C(x)=1,000+100 x-0.25 x^{2}
$$

1. Find the exact cost of producing the $51^{\text {st }}$ guitar.

Exact cost is $C(x+1)-C(x)$
2. Use marginal cost to approx. the cost of producing the $51^{\text {st }}$ guitar.

The marginal cost is C ' (x)

Connection between exact cost and marginal cost

Theorem 1. $\mathrm{C}(\mathrm{x})$ is the total cost of producing x items
$C(x+1)$ is the cost of producing $x+1$ items.
Then the exact cost of producing the $x+1^{\text {st }}$ item is
$C(x+1)-C(x)$
The marginal cost is an approximation of the exact cost. Hence,
$C^{\prime}(x) \approx C(x+1)-C(x)$.

How/Why we use Marginal Cost

$C(x)=10,000+90 x-.05 x^{2}=$ Total weekly cost of manufacturing fuel tanks for cars.
marginal $\operatorname{cost} \mathrm{C}^{\prime}(\mathrm{x}) \approx \mathrm{C}(\mathrm{x}+1)-\mathrm{C}(\mathrm{x})$.
We can easily SEE that $C^{\prime}(200)$ is greater than $C^{\prime}(500)$.
In fact,
$C^{\prime}(200)=$
$C^{\prime}(500)=40$ dollars per tank: The 501 st tank costs $\$ 40$ to produce.
Cost per fuel tank is: Increasing, decreasing or remaining the same?

Marginal Revenue \& Profit

If x is the number of units of a product sold in some time interval, then
Total revenue $=R(x)$
Marginal revenue $=R^{\prime}(x) \approx R(x+1)-R(x)=\begin{aligned} & \text { the additional revenue } \\ & \text { earned by producing } x+1 \\ & \text { units rather than } x \text { units. }\end{aligned}$

Total profit $=\mathrm{P}(\mathrm{x})=\mathrm{R}(\mathrm{x})-\mathrm{C}(\mathrm{x})$

Marginal profit $=P^{\prime}(x)=R^{\prime}(x)-C^{\prime}(x) \approx P(x+1)-P(x)=$

> the additional profit earned by producing $x+1$ units rather than x units.

Application

The price-demand equation and the cost function for the production of television sets are given, respectively by
$x=6,000-30 p$ and $C(x)=150,000+3 x$
a. Express the price p as a function of x.

Application

The price-demand equation and the cost function for the production of television sets are given, respectively by
$x=6,000-30 p$ and $C(x)=150,000+3 x$
a. $\quad p(x)=200-(1 / 30) x$
b. $\quad R(x)=x p(x)=200 x-(1 / 30) x^{2}$
c. Find the marginal cost and marginal revenue functions
d. Find $R^{\prime}(3000)$ and $R^{\prime}(6000)$

Application

The price-demand equation and the cost function for the production of television sets are given, respectively by
$x=6,000-30 p$ and $C(x)=150,000+3 x$
a. $p(x)=200-(1 / 30) x$
b. $\quad R(x)=x p(x)=200 x-(1 / 30) x^{2}$
c. $\quad C^{\prime}(x)=3, R^{\prime}(x)=300-(1 / 15) x$
d. $\quad R^{\prime}(3000)=0$ and $R^{\prime}(6000)=-200$
e. Find the break even points.

Application

The price-demand equation and the cost function for the production of television sets are given, respectively by $x=6,000-30 p$ and $C(x)=150,000+3 x$
$p(x)=200-(1 / 30) x, R(x)=x p(x)=200 x-(1 / 30) x^{2}, R^{\prime}(3000)=0$
Break even points: $x=897.81139 \sim 900$ and $\mathrm{x}=5012.1886 \sim 5000$
Graph the cost function and the revenue function on the same coordinate system over the interval $(0,9000)$. Shade in profit and loss areas. Can you see where profit is maximized?

Application

The price-demand equation and the cost function for the production of television sets are given, respectively by
$x=6,000-30 p$ and $C(x)=150,000+3 x$
a. $\quad p(x)=200-(1 / 30) x$
b. $\quad R(x)=x p(x)=200 x-(1 / 30) x^{2}$
c. $\quad C^{\prime}(x)=3, R^{\prime}(x)=300-(1 / 15) x$
d. $\quad R^{\prime}(3000)=0$ and $R^{\prime}(6000)=-400$
e. Break even points: $\mathrm{x}=897.81139 \sim 900$ and $\mathrm{x}=5012.1886 \sim 5000$
f. Graph the cost function and the revenue function on the same coordinate system over the interval $(0,9000)$.
g. Find the profit function and the marginal profit function in terms of x
h. Compute $P^{\prime}(1500)$ and $P^{\prime}(4500)$. What do these mean? Summary.

