## WARM UP EXERCISE

The ozone level (in parts per billion) on a summer day at R University is given by

$$
\mathrm{P}(\mathrm{x})=80+12 \mathrm{t}-\mathrm{t}^{2}
$$

Where $t$ is hours after 9 am .

1. $P^{\prime}(x)$.
2. Find $P(3)$ and $P^{\prime}(3)$.
3. Write an interpretation.

Given $y=f(x)$ then the derivative may be represented by any of the following: $\mathrm{f}^{\prime}(\mathrm{x}), \mathrm{y}$, $\frac{d y}{d x}$

## §10.5 Derivatives of Constants, <br> Power Forms, and Sums

## The student will learn about:

-the derivative of a constant function
-the power rule
-a constant times $f(x)$
-derivatives of sums and differences
-applications

## The Derivative of a Constant

Let $f(x)=5$.
What is the slope of a the graph of the constant function?

Theorem 1. Let $y=f(x)=c$ be a constant function, then

$$
y^{\prime}=f^{\prime}(x)=0 .
$$

## Power Rule

Example: $f(x)=x^{2}$
$f^{\prime}(x)=$

$$
\begin{array}{lll}
f(x)=x^{3} & f(x)=x^{4} & f(x)=x^{1 / 2} \\
f^{\prime}(x)=3 x^{2} & f^{\prime}(x)=4 x^{3} & f^{\prime}(x)=(1 / 2) x^{-1 / 2}
\end{array}
$$

Theorem: If $y=f(x)=x^{n}$ then $y^{\prime}=f^{\prime}(x)=n x^{n-1}$.
This works for any real number n (not just integers)

## Example 3

$f(x)=\sqrt[3]{\mathbf{x}}$
$f^{\prime}(x)=$
$f(x)=x^{2 / 3}$
$f^{\prime}(x)=$
$f(x)=x^{3 / 2}$
$f^{\prime}(x)=$

## Example 3

$f(x)=3 x^{2}$
$f^{\prime}(x)=$

Theorem 3. Let $y=f(x)=k \bullet u(x)$ be a constant k times a differential function $u(x)$. Then

$$
y^{\prime}=f^{\prime}(x)=k \bullet u^{\prime}(x)=k \bullet u^{\prime} .
$$

## Example 4

$f(x)=6 x^{2 / 3}$
$f^{\prime}(x)=$

$$
\begin{aligned}
& f(x)=4 x^{5 / 3} \\
& f^{\prime}(x)=
\end{aligned}
$$

## Sum and Difference Properties.

Theorem: If $f(x)=u(x)+v(x)$,
then $\quad f^{\prime}(x)=u^{\prime}(x)+v^{\prime}(x)$.

## Example 5

$f(x)=3 x^{5}+x^{4}-2 x^{3}+5 x^{2}-7 x+4$
$f^{\prime}(x)=$

## Applications.

Remember that the derivative gives the instantaneous rate of change of the function with respect to $x$. That might be:

- Instantaneous velocity
- Tangent line slope at a point on the curve of the function.
- Marginal Cost.
- If $C(x)$ is the cost function
- $C^{\prime}(x)$ approximates the cost of producing one more item at a production level of x items.
- $C^{\prime}(x)$ is called the marginal cost.


## Application Example

This example shows the essence in how the derivative is used in business.
The total cost (in dollars) of producing $x$ portable radios per day is
$C(x)=1000+100 x-0.5 x^{2}$ for $0 \leq x \leq 100$.

1. Find the marginal cost at a production level of $x$ radios.

## Application Example

This example shows the essence in how the derivative is used in business.
The total cost (in dollars) of producing $x$ portable radios per day is
$C(x)=1000+100 x-0.5 x^{2}$ for $0 \leq x \leq 100$.
2. Find the marginal cost at a production level of 80 radios and interpret the result.

## Application Example, continued

The total cost (in dollars) of producing $x$ portable radios per day is
$C(x)=1000+100 x-0.5 x^{2}$ for $0 \leq x \leq 100$.
$C^{\prime}(x)=100-x, C^{\prime}(80)=\$ 20$
3. Find the actual cost of producing the $81^{\text {st }}$ radio and compare this cost with the previous results.

## Summary.

If $f(x)=C$ then $f^{\prime}(x)=0$.
If $f(x)=x^{n}$ then $f^{\prime}(x)=n x^{n-1}$.

If $f(x)=k \bullet u(x)$ then $f^{\prime}(x)=k \bullet u^{\prime}(x)=k \bullet u^{\prime}$.

If $f(x)=u(x) \pm v(x)$, then

$$
f^{\prime}(x)=u^{\prime}(x) \pm v^{\prime}(x)
$$

