§10.4 The Derivative

The student will learn about:
-Rate of change
-Slope of the tangent line
-The derivative
-Existence/Nonexistence of the derivative

Difference Quotient: Slope

The difference quotient that
follows gives the average rate of change of the function passing through P and Q :
$f(a+h)-f(a)$

Example 1

The revenue is given by $R(x)=x(75-3 x)$ for $0 \leq \mathrm{x} \leq 20$.
What is the change in revenue if production changes from 5 to $\mathbf{1 0}$?

What is the average rate of change in revenue if production changes from 5 to 10 ?

The Instantaneous Rate of Change.

-Consider the function $y=f(x)$ only at the point ($a, f(a)$).
-The limit of the difference quotient that follows gives the instantaneous rate of change of the function passing through (a, f(a)):
The instantaneous rate of change $=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$

Definition of the Derivative

Given $y=f(x)$, the slope of the graph at the point $(a, f(a))$ is given by

$$
\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

Provided that the limit exist.
-We define it to be the derivative of f at x, denote it by $f^{\prime}(x)$.
-We define the tangent line to $y=f(x)$ at the point $(a, f(a))$ to be the line through this point of slope equal to $f^{\prime}(x)$.

- $f^{\prime}(x)$ is the instantaneous rate of change at x (e.g. velocity).
-If $f^{\prime}(x)$ exists for each x in the open interval (a, b), then f is said to be differentiable over (a, b).

Four-Step Process

To find $f^{\text {' }}(x)$ we use a four-step process
Step 1. Find $f(x=h)$
Step 2. Find $\mathbf{f}(\mathbf{x}+\mathrm{h})-\mathbf{f}(\mathbf{x})$
Step 3. Find $\frac{f(x+h)-f(x)}{h}$
Step 4. Find $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$

Example 2

Find the derivative of $f(x)=x^{2}-3 x$
$f(x+h)=(x+h)^{2}-3(x+h)$
$\mathrm{f}(\mathrm{x}+\mathrm{h})-\mathrm{f}(\mathrm{x})$
$\frac{f(x+h)-f(x)}{h}$

Example 3

Find the slope of the graph of $f(x)=x^{2}-3 x$ at $x=0, x=2$, and $x=3$.

From example 2 we found the derivative of this function at x to be $f^{\prime}(x)=2 x-3$

Example 4

$$
R(x)=60 x-.02 x^{2}
$$

Find R' (x)

Nonexistence of the Derivative.

The existence of a derivative at $x=a$ depends on the existence of a limit at $x=a$; that is, on the existence of

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

If the limit does not exist at $x=a$, we say that the function is nondifferentiable at $\quad x=a$, or $\underline{f^{\prime}}(x)$ does not exist.

$\xrightarrow{f(x)=|x|}$| $\lim _{h \rightarrow 0^{+}} \frac{\|x+h\|-\|x\|}{h}=$ slope of "right" tangent line= |
| :--- |
| $\lim _{h \rightarrow 0^{-}}^{\|x+h\|-\|x\|}$ |
| h | slope of "left" tangent line=

Nonexistence of the Derivative.

In essence, a derivative of a function does not exist at $\mathrm{x}=$ a, if:

- The graph of f has a hole or break at $\mathrm{x}=\mathrm{a}$, or if
- The graph of f has a sharp corner at $\mathrm{x}=\mathrm{a}$, or if
- The graph of f has a vertical tangent at $\mathrm{x}=\mathrm{a}$.

Application

The revenue in dollars from the sale of x car seats for infants is given by $R(x)=60 x-.02 x^{2}$. Find the revenue and the instantaneous rate of change of revenue at a production level of 1000 car seats. What does this mean?

