Limits of rational functions at $x \rightarrow \pm \infty$

Example: $f(x)=\frac{1}{x}$.
$\lim _{x \rightarrow \infty} \frac{1}{x}=0$ When x gets large (positively), $1 / x$ gets close to 0 .
$\lim _{x \rightarrow-\infty} \frac{1}{x}=0$ When x gets large (negatively), $1 / x$ gets close to 0 .

What about?
$\lim _{x \rightarrow \infty} \frac{2}{x}$
$\lim _{x \rightarrow \infty} \frac{-6}{x}$
$\lim _{x \rightarrow-\infty} \frac{5}{x}$

$$
\lim _{x \rightarrow-\infty} \frac{8}{x}
$$

Limits of rational functions at $x \rightarrow \pm \infty$
Example: $f(x)=\frac{x-2}{x+3}$.
Evaluate $\lim _{x \rightarrow \infty} \frac{x-2}{x+3}$

Examples:

Evaluate:
Horizontal asymptotes
$\lim _{x \rightarrow \infty} \frac{2 x-7}{3 x+1}$
$\lim _{x \rightarrow \infty} \frac{-x+4}{2 x+3}$
$\lim _{x \rightarrow-\infty} \frac{3 x-10}{-2 x+1}$
$\lim _{x \rightarrow-\infty} \frac{x-1}{-5 x+11}$

Math 103 Section 9.2: Continuity

- definition
- examples

Definition of continuity

Let $f(x)$ be a function and c a number. The function $f(x)$ is continuous at the point $x=c$ if

1. $\lim _{x \rightarrow c} f(x)$ exists,
2. $f(c)$ exists,
3. $\lim _{x \rightarrow c} f(x)=f(c)$.

Example:

Example:

Example:

Example: Is the function $f(x)=\frac{x-2}{x+3}$ continuous at
$c=0 ?$
$c=-3 ?$
$c=6 ?$

Example from business

A car rental agency charges $\$ 30$ per day (or partial day) or $\$ 150$ per week, whichever is least. What is the rental cost $C(x)$ for x days?

Fill in the charges for the values of x :

x	1.0	2.0	2.6	3.0	3.1	4.0	4.2	5.0	6.0	7.0	7.1
$C(x)$											

Example from business continued:

A car rental agency charges $\$ 30$ per day (or partial day) or $\$ 150$ per week, whichever is least. What is the rental cost $C(x)$ for x days?

Fill in the charges for the values of x :

$$
\begin{array}{l|lllllllllll}
x & 1.0 & 2.0 & 2.6 & 3.0 & 3.1 & 4.0 & 4.2 & 5.0 & 6.0 & 7.0 & 7.1 \\
\hline C(x) & 30 & 60 & 90 & 90 & 120 & 120 & 150 & 150 & 150 & 150 & 180
\end{array}
$$

Example from business

A car rental agency charges $\$ 30$ per day (or partial day) or $\$ 150$ per week, whichever is least. Graph the cost function $C(x)$ and discuss continuity.

Example from business $T(x)$ is the tax on taxable income of x.
The federal income tax rate is

Between	But Not Over	Base Tax	Rate	Of the Amount Over
$\$ 0$	$\$ 7,550$	0	10%	$\$ 0.00$
$\$ 7,550$	$\$ 30,650$	$\$ 755.00$	15%	$\$ 7,550$
$\$ 30,650$	$\$ 74,200$	$\$ 4,220.00$	25%	$\$ 30,650$
$\$ 74,200$	$\$ 154,800$	$\$ 15,107.50$	28%	$\$ 74,200$
$\$ 154,800$	$\$ 336,550$	$\$ 37,675.50$	33%	$\$ 154,800$
$\$ 336,550$		$\$ 97,653.00$	35%	$\$ 336,550$

If you have a taxable income of $x=\$ 110,000$, your tax is

$$
\begin{aligned}
T(110,000) & =\text { Base Tax }+(\text { Rate } \times \text { Amount Over }) \\
& =15,107.50+[.28 \times(110,000-74,200)] \\
& =15,107.50+[.28 \times 35,800) \\
& =15,107.50+10,024.00 \\
& =25,131.50
\end{aligned}
$$

Is $T(x)$ continuous? What does that mean?

The graph of $T(x)$:

Between	But Not Over	Base Tax	Rate	Of the Amount Over
$\$ 0$	$\$ 7,550$	0	10%	$\$ 0.00$
$\$ 7,550$	$\$ 30,650$	$\$ 755.00$	15%	$\$ 7,550$
$\$ 30,650$	$\$ 74,200$	$\$ 4,220.00$	25%	$\$ 30,650$
$\$ 74,200$	$\$ 154,800$	$\$ 15,107.50$	28%	$\$ 74,200$
$\$ 154,800$	$\$ 336,550$	$\$ 37,675.50$	33%	$\$ 154,800$
$\$ 336,550$		$\$ 97,653.00$	35%	$\$ 336,550$

The equations for $T(x)$:

Between	But Not Over	Base Tax	Rate	Of the Amount Over
$\$ 0$	$\$ 7,550$	0	10%	$\$ 0.00$
$\$ 7,550$	$\$ 30,650$	$\$ 755.00$	15%	$\$ 7,550$
$\$ 30,650$	$\$ 74,200$	$\$ 4,220.00$	25%	$\$ 30,650$
$\$ 74,200$	$\$ 154,800$	$\$ 15,107.50$	28%	$\$ 74,200$
$\$ 154,800$	$\$ 336,550$	$\$ 37,675.50$	33%	$\$ 154,800$
$\$ 336,550$		$\$ 97,653.00$	35%	$\$ 336,550$

For income between $\$ 74,200$ and $\$ 154,800$:
Line 4 in the table.
$74200 \leq x \leq 154800$:

The equations for $T(x)$:

Between	But Not Over	Base Tax	Rate	Of the Amount Over
$\$ 0$	$\$ 7,550$	0	10%	$\$ 0.00$
$\$ 7,550$	$\$ 30,650$	$\$ 755.00$	15%	$\$ 7,550$
$\$ 30,650$	$\$ 74,200$	$\$ 4,220.00$	25%	$\$ 30,650$
$\$ 74,200$	$\$ 154,800$	$\$ 15,107.50$	28%	$\$ 74,200$
$\$ 154,800$	$\$ 336,550$	$\$ 37,675.50$	33%	$\$ 154,800$
$\$ 336,550$		$\$ 97,653.00$	35%	$\$ 336,550$

For income between $\$ 30,650$ and $\$ 74,200$:
Line 3 in the table.
$30650 \leq x \leq 74200$:

