Limits of rational functions at $x \to \pm \infty$

Example:
$$f(x) = \frac{1}{x}$$
.

 $\lim_{x\to\infty}\frac{1}{x}=0 \quad \text{When x gets large (positively), $1/x$ gets close to 0.}$

 $\lim_{x \to -\infty} \frac{1}{x} = 0$ When x gets large (negatively), 1/x gets close to 0.

What about?

$$\lim_{x \to \infty} \frac{2}{x} \qquad \qquad \lim_{x \to \infty} \frac{-6}{x}$$
$$\lim_{x \to -\infty} \frac{5}{x} \qquad \qquad \lim_{x \to -\infty} \frac{8}{x}$$

Limits of rational functions at $x \to \pm \infty$ Example: $f(x) = \frac{x-2}{x+3}$.

1

Examples:

Evaluate: $\lim_{x \to \infty} \frac{2x - 7}{3x + 1}$ $\lim_{x \to \infty} \frac{-x + 4}{2x + 3}$ $\lim_{x \to -\infty} \frac{3x - 10}{-2x + 1}$ $\lim_{x \to -\infty} \frac{x - 1}{-5x + 11}$

3

Math 103 Section 9.2: Continuity

- definition
- examples

Definition of continuity

Let f(x) be a function and c a number. The function f(x) is *continuous* at the point x = c if

- 1. $\lim_{x\to c} f(x)$ exists,
- 2. f(c) exists,
- 3. $\lim_{x \to c} f(x) = f(c)$.

Example:

4

Example:

Example:

6

Example: Is the function $f(x) = \frac{x-2}{x+3}$ continuous at

8

Example from business

A car rental agency charges \$30 per day (or partial day) or \$150 per week, whichever is least. What is the rental cost C(x) for x days?

Fill in the charges for the values of x:

Example from business continued:

A car rental agency charges \$30 per day (or partial day) or \$150 per week, whichever is least. What is the rental cost C(x) for x days?

Fill in the charges for the values of x:

X	1.0	2.0	2.6	3.0	3.1	4.0	4.2	5.0	6.0	7.0	7.1
C(x)	30	60	90	90	120	120	150	150	150	150	180

9-a

Example from business

A car rental agency charges \$30 per day (or partial day) or \$150 per week, whichever is least. Graph the cost function C(x) and discuss continuity.

Example from business T(x) is the tax on taxable income of x.

The federal income tax rate is

Between	But Not Over	Base Tax	Rate	Of the
				Amount Over
\$0	\$7,550	0	10%	\$0.00
\$7,550	\$30,650	\$755.00	15%	\$7,550
\$30,650	\$74,200	\$4,220.00	25%	\$30,650
\$74,200	\$154,800	\$15,107.50	28%	\$74,200
\$154,800	\$336,550	\$37,675.50	33%	\$154,800
\$336,550		\$97,653.00	35%	\$336,550

If you have a taxable income of x = \$110,000, your tax is

$$T(110,000) = Base Tax + (Rate \times Amount Over)$$

= 15,107.50 + [.28 × (110,000 - 74,200)]
= 15,107.50 + [.28 × 35,800)
= 15,107.50 + 10,024.00
= 25,131.50

Is T(x) continuous? What does that mean?

11

The graph of T(x):

Between	But Not Over	Base Tax	Rate	Of the
				Amount Over
\$0	\$7,550	0	10%	\$0.00
\$7,550	\$30,650	\$755.00	15%	\$7,550
\$30,650	\$74,200	\$4,220.00	25%	\$30,650
\$74,200	\$154,800	\$15,107.50	28%	\$74,200
\$154,800	\$336,550	\$37,675.50	33%	\$154,800
\$336,550		\$97,653.00	35%	\$336,550

The equations for T(x):

Between	But Not Over	Base Tax	Rate	Of the
				Amount Over
\$0	\$7,550	0	10%	\$0.00
\$7,550	\$30,650	\$755.00	15%	\$7,550
\$30,650	\$74,200	\$4,220.00	25%	\$30,650
\$74,200	\$154,800	\$15,107.50	28%	\$74,200
\$154,800	\$336,550	\$37,675.50	33%	\$154,800
\$336,550		\$97,653.00	35%	\$336,550

For income between \$74,200 and \$154,800:

Line 4 in the table.

 $74200 \le x \le 154800$:

13

Between	But Not Over	Base Tax	Rate	Of the
				Amount Over
\$0	\$7,550	0	10%	\$0.00
\$7,550	\$30,650	\$755.00	15%	\$7,550
\$30,650	\$74,200	\$4,220.00	25%	\$30,650
\$74,200	\$154,800	\$15,107.50	28%	\$74,200
\$154,800	\$336,550	\$37,675.50	33%	\$154,800
\$336,550		\$97,653.00	35%	\$336,550

The equations for T(x):

For income between \$30,650 and \$74,200:

Line 3 in the table.

 $30650 \le x \le 74200$: