Warm up

Describe in words and shade on the number lines the solutions to:
$|x|<3$
$|x-2|<3$
$|x+2|<3$
$\longleftarrow \longrightarrow$
$|5 x|<15$
$\longleftarrow \longrightarrow$
$|-5 x|<15$

Definition of limit of sequence of numbers

$\mathrm{e}=2.7182818284590452353602874713526624977572470936999595$
Roughly speaking the limit means that as n gets large $\left(1+\frac{1}{n}\right)^{n}$ gets close to a finite number which we call e.

Rigorously using decimal expansion: $e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n}$ means that for every positive integer k
there is a positive integer N such that:
e and $\left(1+\frac{1}{n}\right)^{n}$ agree up to k decimal places whenever $n>N$.
not using decimal expansion:
means that for every real number $\varepsilon>0$,
there is an integer N such that le $\left.-\left(1+\frac{1}{n}\right)^{n} \right\rvert\,<\varepsilon$ whenever $n>N$.

n	$(1+1 / \mathrm{n})^{\mathrm{n}}$
1	2
2	$9 / 4=2.25$
10	$2.5937 \ldots$
100	$2.7048 \ldots$
1000	$2.7169 \ldots$ 10000 100000 $10.7181 \ldots$ 1000000$2.718280 \ldots$ 2

§10.1\&3 Introduction to Limits

The student will learn about:

-Functions and graphs
-limits from a graphic approach
-limits from an algebraic approach
-limits of difference quotients.

Limits IMPORTANT!

This table shows what $f(x)$ is doing as x approaches 2 . Or we have the limit of the function as x approaches 2 . Notation:

$$
\lim _{x \rightarrow 2} 2 x-1=3
$$

Idea: We write

$$
\lim _{x \rightarrow c} f(x)=L
$$

if the functional value of $f(x)$ is close to
FTi

$$
\text { or as } x \rightarrow \mathbf{c} ; \mathbf{f}(\mathbf{x}) \rightarrow \mathbf{L}
$$ the single real number L whenever x is

 close to, but not equal to, c. (on either side
of c$)$.

	\mathbf{x}	1.5	1.9	1.99	1.999	2	2.001
$\mathbf{f (x)}$	2	2.8	2.98	2.998	$?$	3.002	

2.01	2.1	2.5
3.02	3.2	4

Limits of functions

Roughly speaking the $\lim _{x \rightarrow a} f(x)=l$
means that as x gets close to a
$f(x)$ gets close to l.

Rigorously: Assume that $f(x)$ is defined on the open interval (a, b).
$\lim _{x \rightarrow a} f(x)=l$
means that for every real number $\varepsilon>0$,
there is a real number $\delta>0$ such that
$|f(x)-l|<\varepsilon$ whenever $|x-a|<\delta$.

Example:

$$
\lim _{x \rightarrow-4} f(x)=2
$$

For every real number $\varepsilon>0$,
there is a real number $\delta>0$ such that $|f(x)-2|<\varepsilon$ whenever $|x-(-4)|<\delta$.

1. Using the graph above compute $\lim _{x \rightarrow 1} f(x)=$
2. Using the graph of $y=6$ compute $\lim _{x \rightarrow 1} 6=$
3. Using the graph of $y=2 x$ compute $\lim _{x \rightarrow 2} 2 x=$

Example:

4. Using the definition compute: $\lim _{x \rightarrow 3} 2 x=$

How can we write an x that is close to 3 ?
$|f(x)-6|=|f(3+h)-6|=$

Example:

5. Using the definition compute: $\lim _{x \rightarrow 7} 4 x-5=$

Basic Properties of Limits:

Constant Function: $\lim _{x \rightarrow a} c=$ \qquad . Identity Function: $\lim _{x \rightarrow a} x=$ \qquad Assume that: $\lim _{x \rightarrow a} f(x)=b$ and $\lim _{x \rightarrow x_{0}} g(x)=d$
Sum Rule: $\lim _{x \rightarrow a} f(x)+g(x)=$
Product Rule: $\lim _{x \rightarrow a}(f(x) g(x))=$ \qquad -
Rational Function: Assume that $\mathrm{g}(\mathrm{x})$ is a polynomial and $\mathrm{g}\left(\mathrm{x}_{0}\right) \neq 0$
$\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=$
$=$ $\lim _{x \rightarrow a} g(x)$
Powers of functions:
$\lim _{x \rightarrow a}(f(x))^{r}=\left(\lim _{x \rightarrow a} f(x)\right)^{r}$

Examples using properties:

$\lim _{x \rightarrow 2} 1=1$.
$\lim _{x \rightarrow 2} x^{2}=4$.
$\lim _{x \rightarrow 2} x^{3}=$ \qquad .
Show $\lim _{x \rightarrow 2}\left(x^{3}+x^{2}-1\right)=11$.

From this example we can see that for a polynomial function

 $\lim _{x \rightarrow c} f(x)=f(c)$
Examples using properties:

Find $\lim _{x \rightarrow 2}\left(3 x^{3}-5 x^{2}+6\right)=$

Find $\lim _{x \rightarrow 2} \frac{\left(x^{3}+x^{2}-1\right)}{x-5}=$
From this example we can see that for a rational function

$$
\lim _{x \rightarrow c} \frac{P(x)}{Q(x)}=\frac{P(c)}{Q(c)} \text { if } Q(c) \neq 0
$$

Find $\lim _{x \rightarrow 5} \frac{2 x-1}{x-5}=$

Example

$$
f(x)=\left\{\begin{array}{c}
2 x \text { if } x<2 \\
-x+8 \text { if } 2 \leq x \leq 4 \\
x \text { if } x>4
\end{array}\right.
$$

$\lim _{x \rightarrow 2^{-}} f(x)=$

$$
\lim _{x \rightarrow 2^{+}} f(x)=
$$

$\lim _{x \rightarrow 2} f(x)=$
$\lim _{x \rightarrow 4^{-}} f(x)=$
$\lim _{x \rightarrow 4^{+}} f(x)=$
$\lim _{x \rightarrow 4} f(x)=$

Where is the limit undefined?

$\lim _{x \rightarrow 0} f(x)$ does not equal a finite number
Roughly speaking :
No matter how close x gets to 0

What about $f(x)=\left\{\begin{array}{c}1 \text { if } x \text { is rational } \\ -1 \text { if } x \text { is irrational }\end{array}\right.$ $\lim _{x \rightarrow 0} f(x)=$

The sky is the limit! (limits that go to infinity)

Roughly speaking the $\lim _{x \rightarrow x_{0}} f(x)=\infty$ means that as x approaches x_{0}

Rigorously: $\lim _{x \rightarrow a} f(x)=\infty$

means that for every real number $B>0$,
there is a real number $\delta>0$ such that $|f(x)|>B$ whenever $|x-a|<\delta$.

Reciprocal Test: Let f be defined in an open interval about x_{0}, except possibly at x_{0} itself. Then $\lim _{x \rightarrow x_{0}} f(x)=\infty$ if

1. For all x in some interval about $x_{0}, f(x)$ is positive; and
2. $\lim _{x \rightarrow x_{0}} \frac{1}{f(x)}=0$.

Indeterminate Form

If $\lim _{x \rightarrow c} f(x)=0$ and $\lim _{x \rightarrow c} g(x)=0$, then $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ is said to be indeterminate.

The term indeterminate is used because the limit may or may not exist.
$\lim _{x \rightarrow 5} \frac{\left(x^{2}-25\right)}{x-5}=$
$\lim _{x \rightarrow 5} \frac{\left(x^{2}-25\right)}{(x-5)^{3}}=$

