

Definition of limit of sequence of numbers e = 2.7182818284590452353602874713526624977572470936999595		
Roughly speaking the limit means that as n gets large	n	$(1+1/n)^{n}$
$(1 + \frac{1}{n})^n$ gets close to a finite number which we call <i>e</i> . <u>Rigorously using decimal expansion</u> : $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$ means that for every positive integer <i>k</i> there is a positive integer <i>N</i> such that:	1	2
	2	9/4=2.25
	10	2.5937
<i>e</i> and $(1 + \frac{1}{n})^n$ agree up to <i>k</i> decimal places whenever $n > N$.	100	2.7048
not using decimal expansion:	1000	2.7169
means that for every real number $\varepsilon > 0$,	10000	2.7181
there is an integer N such that $N = (1 + 1)^N + 2$, whenever $N = N$	100000	2.271826
$ e - (1 + \frac{1}{n})^n < \varepsilon$ whenever $n > N$.	1000000	2.718280

4. Using the definition compute: $\lim_{x\to 3} 2x =$ How can we write an x that is close to 3?

|f(x) - 6| = |f(3 + h) - 6| =

Example:

7

8

5. Using the definition compute: $\lim_{x \to 7} 4x - 5 =$

