MATH 127A TEST 3 Solutions Pre-Algebra Spring 2009 Tigran Mkrtchyan

1) (4 points) Solve this linear inequality and graph the solution.
$3 x+5>11$
$3 x>11-5$
$3 x>6$

$\frac{3 x}{3}>\frac{6}{3}$
$x>2 \quad(2, \infty)$
2) (4 points) Complete each ordered pair for equation $y=-2 x+4$ (Find the missing coordinate.)
(-1,6),
(2 , 0)
$x=-1, y=$?
plug $x=-1$ in the equation
$y=-2(-1)+4=2+4=6$
$y=0, x=$?
$0=-2 x+4$
$0+2 x=-2 x+4+2 x$
$2 x=4$
$x=\frac{4}{2}$
$x=2$
3) Graph the linear equations
(a) (4 points) $y=2 x+1$
(b)(4 points) $x=2$
y-intercept is $(0,1)$, slope is $2=\frac{2}{1}$
Plot (0,1), then go up 2 units, right 1 unit to plot
The second point and connect them with a straight line.

4) Find the slope.
(a) (4 points) Find the slope of the line through $(1,-3)$ and $(0,4)$
$m=\frac{4-(-3)}{0-1}=\frac{7}{-1}=-7$
(b) (4 points) Find the slope of the line $y=3 x+4$

This is of the form $y=m x+b$, we see the slope $m=-3$
(c) (4 points) Find the slope of the line $2 x-5 y=4$

We need to bring to the form $\mathrm{y}=\mathrm{mx}+\mathrm{b}$, so solve for y
$-5 y=4-2 x$
$-\frac{1}{5}(-5) y=-\frac{1}{5}(4-2 \mathrm{x})$
$y=-\frac{1}{5}(4)+\left(-\frac{1}{5}\right)(-2 \mathrm{x})$
$\mathrm{y}=-\frac{4}{5}+\frac{2}{5} x$
$y=\frac{2}{5} x-\frac{4}{5}$
Comparing to $y=m x+b$ we see the slope is $m=\frac{2}{5}$
5) (4 points) Decide whether the pair of lines is parallel, perpendicular or neither $3 x-y=4$ and $6 x-2 y=-12$
We need to find the slopes first because we know if two lines have the same slopes they are parallel.
To find the slopes we'll bring them to $y=m x+b$ form
$3 x-y=4$
$-y=3 x+4$
$y=(-3 x+4)$
$y=3 x-4$
so the slope is $\mathrm{m}=3$
$6 x-2 y=-12$
$-2 y=-6 x-12$
$\frac{-2 y}{-2}=\frac{-6 x-12}{-2}$
$y=\frac{-6 \mathrm{x}}{-2}-\frac{12}{-2}$
$y=3 x+6$
We see the slope is $\mathrm{m}=3$
The two lines have the same slopes, so they are parallel.
6) (4 points) Graph the line using the slope and y-intercept (you need to find the slope and y-intercept, then use them to graph the line) $2 x-3 y=3$

To bring to $y=m x+b$ form, solve for y
$2 x-3 y=3$
$-3 y=-2 x+3$
$\left(-\frac{1}{3}\right)(-3) y=\left(-\frac{1}{3}\right)(-2 x+3)$
$y=\left(-\frac{1}{3}\right)(-2) x+\left(-\frac{1}{3}\right)(3)$
$y=\frac{2}{3} x-1$

So we see the slope is $m=\frac{2}{3}$ and the y-intercept is $(0,-1)$
Plot $(0,-1)$, then go up 2 and to the right 3 units.
7) (4 points) Find the equation of the line that goes through ($-2,4$), with slope -3 (hint use point-slope form) Use point-slope form $y-y_{1}=m\left(x-x_{1}\right)$, where the slope $m=-3$ and $\left(x_{1}, y_{1}\right)=(-2,4)$ $y-4=-3(x-(-2))$ or $y-4=-3(x+2)$
8) (4 points) Find the equation of the line through points $(-2,3)$ and $(3,4)$.

First we fint the slope is $m=\frac{4-3}{3-(-2)}=\frac{1}{5}$, then we use the point-slope form $y-y_{1}=m\left(x-x_{1}\right)$, we get
$y-4=\frac{1}{5}(x-3)$. Note we could also use the point $(-2,3)$ and get $y-3=\frac{1}{5}(x-(-2))$ or $y-3=\frac{1}{5}(x+2)$

(the part that contains $(0,0)$)

