
ALGEBRA QUAL SOLUTIONS

KIM, SUNGJIN

Note that I do not write full detail in here because of laziness. However, those
details should be written down when you take the qual.

1. Groups

2. Rings

Problem 2.1. (Fall08, R2) Let A be a domain and B = A[T, 1
T ] for an indeter-

minate T . Prove that the ring automorphism group Aut(B|A) of B inducing the
identity on A is finite if and only if the group of invertible elements of A is finite.

Proof. (⇐) Suppose A× is infinite, then we have infinitely many automorphisms
defined for a ∈ A×:

fa : B −→ B

T 7→ aT

(⇒) Suppose A× is finite. Since A is an integral domain, f ∈ A[T ] with f |Tn

implies that f = aT k for some a ∈ A× and k ≤ n. Using this, we can characterize
the unit group of B.

B× = {aTn|a ∈ A×, and n ∈ Z}.

Any automorphism σ of B must satisfy σ(T ) ∈ B×, since σ(T )σ( 1
T ) = 1. Then, we

have σ(T ) = aTn for some a ∈ A× and n ∈ Z. However σ is an automorphism if
and only if n = ±1. It follows that,

σ ∈ Aut(B|A)⇐⇒ σ(T ) ∈ {aTn|a ∈ A× and n = ±1}

Hence, we obtain that Aut(B|A) is finite. �

Problem 2.2. (Fall08, R3) Consider the covariant functor F : A 7→ A× from the
category ALG of commutative rings with identity to the category of sets. Here A×

is the group of invertible elements of A. Give an explicit form of a commutative
ring R such that the functor F is isomorphic to the functor A 7→ HomALG(R,A).

Proof. This problem is easy when you know the answer. The proof is obvious from
the answer.

R = A

[
T,

1
T

]
.

�

Problem 2.3. (Spring08, R1) Let D be an associative ring with unit having no zero
divisors. Assume that the center of D contains a field k such that dimk(D) < ∞.
Prove that D is a division algebra(i.e. every nonzero elements are invertible).
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Proof. Let a ∈ D be a nonzero element. Since d = dimk(D) < ∞, the set
{1, a, a2, a3, · · · , ad} is linearly dependent over k. Thus, there exists a polynomial
p ∈ k[T ] such that p(a) = 0. We take the minimal one so that p has nonzero con-
stant term. Then, we obtain by dividing the constant term, ag(a) + 1 = 0 for some
polynomial g ∈ k[T ]. −g(a) is the inverse of a. Hence, D is a division algebra. �

Problem 2.4. (Spring08, R3) Let R be a Noetherian ring and I any ideal of R.
Prove that there exist prime ideals P1, · · · , Pm such that

P1P2 · · ·Pm ⊂ I
Hint: Show that if J is any non-prime ideal, then there exist a, b /∈ J such that
(J + a)(J + b) ⊂ J . Then use the Noetherian property.

Proof. Suppose there exists an ideal I which does not contain any finite product of
prime ideals. Then, we have a nonzero family of ideals

F = {J C R|J does not contain any finite product of prime ideals.}.
Since R is Noetherian, the family F has a maximal element M . Note that M ∈ F
is not a prime ideal. Thus, we can find a, b /∈ M such that ab ∈ M . This implies
that (M + a)(M + b) ⊂ M . Maximality of M imply that M + a and M + b are
not in F , so they contain finite product of prime ideals. Then M contains a finite
product of prime ideals, and this is a contradiction. �

Problem 2.5. (Fall07, R3) Determine all isomorphism classes of modules over the
polynomial ring F2[X] which are of dimension 2 over F2, and justify your answer.
Here F2 is a field of two elements.

Problem 2.6. (Spring06, R3) Let R be a commutative ring with unit and m a
maximal ideal of R.
(a) Suppose I1, · · · , In are ideals of R and that

m ⊇ I1 · · · In,
where I1, · · · , In is the product of ideals. Show

m ⊇ Ik
for some k.
(b) Suppose that R satisfies the descending chain condition (dcc) on ideals, i.e.
every strictly decreasing sequence of ideals is finite. Show R has only a finite number
of maximal ideals. You may use part (a), but not theorems on the structure of rings
satisfying dcc.

Proof. (a) Suppose not, there exists xk ∈ Ik with xk /∈ m for all k ≤ n. Since
maximal ideal is a prime ideal, we must have x1 · · ·xn /∈ m. This contradicts that
m ⊇ I1 · · · In.
(b) Suppose we have infinitely many maximal ideals m1,m2 · · · . For each k, let

Ik = m1 · · ·mk

where m1 · · ·mk is the product of ideals. The descending chain condition (dcc)
implies that there is N such that

IN = IN+r

for all r ≥ 0. From the definition of Ik, we have

mN+r ⊇ IN+r = IN .
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By (a), there is some k ≤ N such that mN+r ⊇ mk. Since both are maximal ideals,
mN+r = mk. This is a contradiction since {m1,m2, · · · } ⊆ {m1, · · · ,mN}. Hence,
there are only a finite number of maximal ideals. �

Problem 2.7. (Fall05, R1) Let I and J be ideals of a commutative ring R with
unit such that I + J = R. Prove that IJ = I ∩ J .

Proof. Since IJ ⊂ I and IJ ⊂ J , it follows IJ ⊂ I ∩ J . For the reverse inclusion,
we find i ∈ I and j ∈ J such that

i+ j = 1.

Then, for any k ∈ I ∩ J ,

k = k · 1 = k(i+ j) = ki+ kj ∈ IJ.

�

Problem 2.8. (Spring04, R3) Suppose we are given a collection of polynomials in
r variables with rational coefficients:

f1, · · · , fN ∈ Q[T1, · · · , Tr]

We define the complex algebraic set VC ⊂ Cr by

VC = {(a1, · · · , ar)|fi(a1, · · · , ar) = 0 for all i from 1 to N}.

Suppose VC is not empty. Show that there is a finite extension K of Q and a point

(a1, · · · , ar) ∈ VC

with all ak ∈ K.

Proof. We use Nullstellensatz.
(Hilbert’s Nullstellensatz) Let K be an algebraically closed field, and let I be an
ideal in K[x1, . . . , xn], the polynomial ring in n indeterminates. Define V (I), the
zero set of I, by

V (I) = {(a1, . . . , an) ∈ Kn | f(a1, . . . , an) = 0 for all f ∈ I}

Then Rad(I) = I(V (I)).
In the problem, we use this on the ideal I = (f1, · · · , fN ).

VC is not empty ⇒ RadC(f1, · · · , fN ) 6= C[T1, · · · , Tr]

⇒ RadQ(f1, · · · , fN ) 6= Q[T1, · · · , Tr]
⇒ VQ is not empty

where Q is the algebraic closure of Q. Taking any element (a1, · · · , ar) ∈ VQ and
letting K = Q(a1, · · · , ar) gives the result. �

Problem 2.9. (Winter03, R1) Give an example of two integral domains A and B
which contain a field F such that A⊗F B is not an integral domain. Justiry your
answer. Hint: Take A to be the field of rational functions Fp(X) for the field Fp

with p elements.
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Proof. Take A = B = Fp(X) and F = Fp(Xp). Then A and B are integral domains.
However,

X ⊗ 1− 1⊗X ∈ A⊗F B

is a nonzero element in A⊗F B satisfying

(X ⊗ 1− 1⊗X)p = Xp ⊗ 1− 1⊗Xp = 0.

Hence, A⊗F B is not an integral domain. �

3. Fields

4. Linear Algebra


