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1. Introduction

Let α be an irrational number with α > 1. We denote S(α) by

S(α) = {bnαc|n ∈ N}.
In 1926, Sam Beatty [1] proved that if α, β are positive irrational numbers, then
the disjoint union of S(α) and S(β) is N if and only if 1

α + 1
β = 1. It is easy to see

that if α, β are positive irrational numbers and
k

α
+

l

β
= 1

for some positive integers k, l, then S(α) ∩ S(β) = φ.
In this note, we shall show that the converse of this statement is also valid. In

addition, we deduce that S(α) ∩ S(β) is either empty or infinite.

Theorem. For irrational numbers α, β > 1,

S(α) ∩ S(β) = φ

if and only if
k

α
+

l

β
= 1

for some positive integers k, l.

2. Lemmas

We denote B(x, y, r) by an open ball in R2 centered at (x, y) with radius r. For
a real number x, (x) denotes the fractional part of x. For real numbers α and β,
we define S(α, β) by

S(α, β) = {
(
(nα), (nβ)

)
|n ∈ N}.

Lemma 1. Let m, n, r be positive integers. Then, bnαc = bmβc = r − 1 if and
only if

(
r
α

)
≤ 1

α and
(

r
β

)
≤ 1

β .

Proof. We observe that bnαc = bmβc = r − 1 is equivalent to any of the following
statements:

nα < r ≤ nα + 1, mβ < r ≤ mβ + 1;

n <
r

α
≤ n +

1
α

, m <
r

β
≤ m +

1
β

;

0 <
( r

α

)
≤ 1

α
, 0 <

( r

β

)
≤ 1

β
.

Thus, Lemma 1 follows. �
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Lemma 2 (Kronecker’s Theorem). If 1, α, β are linearly independent over Q,
then the set S(α, β) is dense in [0, 1]2.

Proof. See [2], p382. �

Lemma 3. Let α > 1, β > 1 be irrational numbers satisfying k
α + l

β = m with
k, l, m relatively prime integers and l > 0. Then S

(
1
α , 1

β

)
is dense in

[0, 1]2 ∩ {(x, y)|kx + ly ∈ Z}.

Proof. Let (x, y) ∈ [0, 1]2 be such that kx+ ly = z for some z ∈ Z and 0 < ε < d/2,
where d is the distance between two lines, kx + ly = 0, kx + ly = 1. Using the
pigeon hole principle, we get

v = (v1, v2) =
((n2

α

)
−

(n1

α

)
,
(n2

β

)
−

(n1

β

))
with positive integers n1, n2 (n1 < n2), and |v| < ε < d

2 . Since (k, l, m) = 1, for
any z ∈ Z, there is a triple (n, z1, z2) with n ∈ N, z1 ∈ Z and z2 ∈ Z such that

mn + kz1 + lz2 = z

From |v| < d, we have kv1 + lv2 = 0. Then, we get

k
(n

α
+ z1 + Nv1

)
+ l

(n

β
+ z2 + Nv2

)
= mn + kz1 + lz2 = z

for any N ∈ N. Hence, we can find a positive integer N and integers u1, u2 such
that (n

α
+ z1 + Nv1,

n

β
+ z2 + Nv2

)
∈ B(u1 + x, u2 + y, ε)

Thus, Lemma 3 follows. �

3. Proof of the Theorem

Let α > 1, β > 1 be irrational numbers satisfying S(α)∩ S(β) = φ. 1, 1
α , 1

β are
either linearly independent over Q or linearly dependent over Q. The latter case
we multiply a nonzero integer to get k

α + l
β = m, with k, l, m relatively prime

integers, and l > 0. Since k 6= 0, we divide the latter into two cases k < 0, and
k > 0.

Case 1. 1, 1
α , 1

β are linearly independent over Q.

By Lemma 2, S
(

1
α , 1

β

)
is dense in [0, 1]2. Then we have

S
( 1

α
,
1
β

)
∩

(
0,

1
α

]
×

(
0,

1
β

]
is an infinite set. This implies ( r

α

)
≤ 1

α
,

( r

β

)
≤ 1

β

for infinitely many positive integers r. Using this and Lemma 1, we have S(α)∩S(β)
is an infinite set.

Case 2. k
α + l

β = m, with k, l, m relatively prime integers, l > 0 and k < 0.
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The set
{(x, y)|kx + ly ∈ Z} ∩

(
0,

1
α

]
×

(
0,

1
β

]
contains a line segment of kx + ly = 0. By Lemma 3, the set

S
( 1

α
,
1
β

)
∩

(
0,

1
α

]
×

(
0,

1
β

]
is an infinite set. This implies S(α) ∩ S(β) is an infinite set as in Case 1.

Case 3. k
α + l

β = m with k, l, m relatively prime integers, l > 0 and k > 0.

Since S(α) ∩ S(β) = φ, we have

(1) S
( 1

α
,
1
β

)
∩

(
0,

1
α

]
×

(
0,

1
β

]
= φ

by Lemma 1. It follows that

{(x, y)|kx + ly ∈ Z} ∩
(
0,

1
α

]
×

(
0,

1
β

]
does not contain any line segment, otherwise it contradicts (1) by Lemma 3.
This implies

1
β
≤ −k

l

1
α

+
1
l

which is equivalent to m ≤ 1. Thus, we obtain m = 1.
By Cases 1–3, we complete the proof of the Theorem.
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