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Abstract

We construct a smooth function with certain convexity properties
answering a question left open in a previous paper by Pong and Ra-
ianu. Moreover, we show that a second derivative must be convex
near a point of convexity unless it is a limit point of its zeros. This
strengthens another result in the previous paper.
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There are several notions of pointwise convexity in the literature [1, 2, 3,
4, 6], and [7]. Pong and Raianu studied their relationships in [5]. Among
the many examples given in that article is a family of Cn (n ≥ 1) functions
that are p-convex but not convex at a point of convexity. They also showed
that no analytic example is possible since a function must be convex near
an analytic point of convexity [5, Theorem 1]. However, smooth examples
indeed exist as we will construct one in this article.

We start by recalling various notions of pointwise convexity that will be
discussed. Let Ψ(x0, x1, x2) be the second difference quotient of a function
f , i.e.

Ψ(x0, x1, x2) =
φ(x2, x0)− φ(x1, x0)

x2 − x1

where φ(x, y) = (f(x) − f(y))/(x − y). Near x0, by that we mean on some
open interval containing x0, if



1. Ψ(x0, x1, x2) ≥ 0 for all x1, x2 on opposite sides of x0 then x0 is a point
of convexity of f .

2. Ψ(x0, x1, x2) ≥ 0 for all x1, x2 on the same side of x0 then f is convex
at x0.

3. whenever x1, x2 are on opposite sides of x0 with x0 + x′
0 = x1 + x2,{

Ψ(x1, x0, x
′
0) + Ψ(x2, x0, x

′
0) ≥ 0 if x0 ̸= x′

0; or

Ψ(x0, x1, x2) ≥ 0 if x0 = x′
0.

then f is p-convex at x0.

Note that being convex at x0 means φ(x, x0) is increasing on either side of
x0. When f is differentiable, that means φ′(x, x0) ≥ 0 on either side of x0.
Also, by Theorem 2 of [1], f is p-convex at x0 if f ′(x1) ≤ f ′(x0) ≤ f ′(x2)
whenever x1 ≤ x0 ≤ x2 are two points near x0. In particular, to show that
an even differentiable function f is p-convex at 0, it suffices to check that
f ′(x) > 0 for positive x because by the fact that f ′ is odd, f ′(x) < 0 for
negative x and by the intermediate value property of derivatives (Darboux’s
Theorem) f ′(0) = 0. Incidentally, when these conditions are met, 0 is also a
local minimum of f , and hence is a point of convexity of f . We will construct
a C∞ function f and use the above criteria above to verify that

1. 0 is a point of convexity of f ,

2. f is p-convex at 0, and

3. f is not convex at 0.

Example 0.1. There is an even C∞ function f : R → R such that xf ′(x) > 0

for x > 0, f(0) = 0, and d
dx

(
f(x)
x

)
changes sign infinitely many times in any

open interval containing 0.

Proof. Consider the smooth bump functions:

b+(x) =

{
e−

1
(x−5)(9−x) if 5 < x < 9
0 otherwise,

and

b−(x) =

{
e−

1
(x−9)(10−x) if 9 < x < 10

0 otherwise.
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The maximum of b+ is e−
1
4 and the maximum of b− is e−4. We have∫ 10

9

b−(x) dx < e−4 <
1

2
(8− 6)e−

1
4 < (8− 6)e−

1
3 <

∫ 9

5

b+(x) dx,

and since 40e−4 < e−
1
4 , we have

40

∫ 10

9

b−(x) dx <

∫ 9

5

b+(x) dx. (1)

We combine the two bump functions above into one up-down bump function:

b(x) = b+(x)− b−(x),

and we use (1) to obtain

B :=

∫ 10

5

b(x) dx >
39e−

1
4

40
> 0. (2)

Now, for x > 0, consider the sum of infinitely many shrunken copies of the
up-down bump function:

g(x) =
∞∑
n=0

b(2nx)

2n2 .

For x ≥ 10, g(x) = 0, and for 0 < x < 10, if m ≥ 0 is the unique integer
such that 5/2m < x ≤ 10/2m we have:

g(x) =

{
b(2mx)

2m2 > 0 if 2mx < 9
b(2mx)

2m2 ≥ −e−4

2m2 if 2mx ≥ 9.

Then we extend g to R by defining g(0) = 0 and requiring g(x) = g(−x)
for all x < 0. Near any positive x, g is just the sum of at most two shrunken
copies of b and so g is C∞ at x and

g(k)(x) =
∞∑
n=0

b(k)(2nx)

2n2−kn
(x > 0).

To show that g is C∞ at 0, assume g(k)(0) = 0 for some k ≥ 0 (the case k = 0
is true by definition). For any ε > 0, let n0 = n0(ε, k) > k + 1 be sufficiently
large so that

Bk

2n
2
0−n0(k+1)

< ε.
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where Bk bounds |b(k)(x)| everywhere. Then for any 0 < x ≤ 10/2n0 , 5/2m <
x ≤ 10/2m for some m ≥ n0. Thus,∣∣∣∣g(k)(x)− g(k)(0)

x− 0

∣∣∣∣ =
∣∣∣∣∣

∞∑
n=0

b(k)(2nx)

2n2−knx

∣∣∣∣∣ ≤ Bk

2m2−mk
· 2

m

5
<

Bk

2n
2
0−n0(k+1)

< ε.

This shows that the right derivative of g(k)(x) at 0 exists and is 0. For x < 0,
g(k)(−x) = (−1)kg(k)(x) so the same argument show that the left-derivative
of g(k)(x) at 0 is also 0. Thus, g(k+1)(0) = 0 and so g is C∞ at 0 by induction.

Next, we define f by f(x) = xG(x) where G(x) =
∫ x

0
g(s)ds. So f(0) = 0

and note that near 0, φ′(x, 0) = (f(x)/x)′ = g(x) changes sign on either side
of 0. Hence f is not convex at 0.

By the uniform convergence of the series defining g, we have

G(x) =
∞∑
n=0

1

2n2

∫ x

0

b(2ns) ds.

The change of variable 2ns = u yields,

G(x) =
∞∑
n=0

1

2n2+n

∫ 2nx

0

b(u) du.

Let 0 < x ≤ 10, letm ≥ 0 be the unique integer such that 5/2m < x ≤ 10/2m.
Then

g(x) =
b(2mx)

2m2 ≥ −e−4

2m2 , (3)

Since g(x) > 0 for 5/2m < x < 9/2m, we have G(x) > 0 in this range.
For 9/2m ≤ x ≤ 10/2m, we have

G(x) ≥
∞∑

n=m

B

2n2+n
≥ B

2m2+m
> 0, (4)

where B =
∫ 10

5
b(x) dx. Since G(x) = G(10) for x > 10, we conclude that

G(x) > 0 and hence f(x) > 0 for all x > 0.
To prove that f ′(x) > 0 for positive x, consider the logarithmic derivative

of f ,
f ′(x)

f(x)
=

1

x
+

g(x)

G(x)
.
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We prove that f ′(x)/f(x) is positive for x > 0 by checking how far g(x)/G(x)
can go in the negative direction. Note that f ′(x)/f(x) is positive when g(x)
is nonnegative, so we only need to consider those x’s such that g(x) < 0. In
particular, 9/2m < x < 10/2m and so by Equation (3) and (4),

g(x)

G(x)
≥ −e−4

2m2 · 2
m2+m

B
= −e−42m

B
.

Using 10/x > 2m and (2), it follows that

g(x)

G(x)
≥ −e−410

x
· 40e

1/4

39
= − 400

39e15/4x
> − 1

4x
.

Therefore,
f ′(x)

f(x)
=

1

x
+

g(x)

G(x)
≥ 1

x
− 1

4x
=

3

4x
> 0.

Hence, f(x) = xG(x) satisfies 1, 2, and 3.

We conclude this article with a stronger version of Proposition 6 of [5].
We realize the continuity assumption of the second derivative in the original
statement can be removed when we revisited that paper.

Proposition 0.1. Let f be twice differentiable near a point of convexity x0

then f is convex near x0 unless x0 is a limit point of the zeros of f ′′.

Proof. Suppose x0 is not a limit point of the zeros of f ′′, that is, f ′′ is
zero-free on some punctured neighborhood I \ {x0} of x0. If f ′′ > 0 on I,
then f is convex on I. If f ′′ < 0 on I, then −f is convex on I and so
φ(x1, x0) ≥ φ(x2, x0) for all x1 < x2. But since x0 is a point of convexity
of f , φ(x1, x0) ≤ φ(x2, x0) for all x1 < x0 < x2. Therefore, φ(x, x0) must
be constant on I (and the constant is f ′(x0)) hence f is linear and therefore
also convex on I.

As a derivative, f ′′ satisfies the intermediate value property. So, if f ′′

changes sign on I at all, its sign must change across x0 and f ′′(x0) = 0 as
x0 is the only possible zero of f ′′ in I. Suppose f ′′ changes from negative to
positive across x0. Since x0 is a point of convexity of f , for x1 < x0 < x2,

f(x0)− f(x1)

x0 − x1

≤ f(x2)− f(x0)

x2 − x0

.
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Letting x2 → x0, we conclude that for all x1 < x0,

f(x0)− f(x1)

x0 − x1

≤ f ′(x0).

So, f ′(u) ≤ f ′(x0) for some x1 < u < x0 according to the mean value
theorem. But this contradicts f ′′ < 0 on (x1, x0). Now if f ′′ changes from
positive to negative across x0, then one should let x1 → x0 and conclude in a
similar way that f ′(x0) ≤ f ′(u) for some x0 < u < x2, contradicting f ′′ < 0
on (x0, x2).

Figure 1: The function g(x) Figure 2: The function G(x)

Figure 3: The function f(x)
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