WEIL BOUND FOR KLOOSTERMAN SUMS

KIM, SUNGJIN

1. THE ZETA FUNCTION FOR KLOOSTERMAN SUMS

Theorem 1. Let q be a prime power, and x be a multiplicative character of Fy.
For a,b prime to p, the Kloosterman sum satisfies the bound

ar + bz~ 1
<1> > (ale () <200
z€Fy q
We first consider when x is trivial. Then the sum in (1) is just

@) Z . (am +qu—1)

z€F?

Let ¢ and ¢ be the additive characters defined by ¢ (z) = e (%), and ¢(x) =

e(%) respectively. Denote S(¢,¢) = — > cp. ¥(x)p(x™ ") where F = F,.
Then the companion sums over the extension fields F,, = Fy» are
(3) Sn(¥,¢) = = Y »(Tr(2))d(Tr(z "))

z€Fy

The Kloosterman zeta function is

S (4, ) 1

n

(4) Z(,¢) =exp [ Y

n>1

Let G C F(X) be the group of quotients of monic polynomials defined and non-
vanishing at 0. We define a character n : G — C* by putting

n(h) = v¥(a1)d(aq—1/aq)
for a monic polynomial h € G, where we write
h=X"+a; X 4+ +ag_1 X +ag
(with ag # 0 since h € G). Then the L-function associated to 7 is given by

L(s,m) = S n()N(R) " = 1 - S, 0)g~* + ',
h

This identity is verified through rearranging terms according to the degree of h.

Lsm=S 3 um)|q¢™
d>0 \deg(h)=d
1
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and evaluating the inner sums. For d = 0, we have only h = 1 and n(1) = 1. For
d =1, we have h = X + a with a # 0, hence

Yo o)=Y n(X +a)=> vla)plat) = -S, ).
deg(h)=1 aclF* acF*

For d = 2, we get

Z n(h) = Z n(X?+aX +b) = Z ¥(a)(ab

deg(h)=2 acl a€lF
beF* beF*
. (z w@) (quw) _,
a€F* beF
Finally for d > 3, we get
ooy = Y Xt aXT 4 a1 X +a)
deg(h)=3 a€F*

ai--,aq—1€F

=" Y Wla)glaa1a”) =0

ay,aq_1€F
acF*

since there is free summation over a; € F.

Lemma 1. For iy and ¢ non-trivial, we have the identity

o) Z00.0)a™) = L) = {5 T

Proof. Taking the logarithmic derivative we get

logq L Zdeg Zn 7" —rdeg(P)s

r>1

S (S S ey | e

n>1 \rd=n deg(P)=d

and it suffices to prove the formula
(6) > dn(P)" = =S, (1, )
d=deg(P)|n

forn >1. Let P= X"+ a1 X"+ ... +ag_1X + aq be one of the irreducible
polynomials on the left side of (6), of degree d|n, and x1, - - - , 24 its roots, which lie
in Fy. We have for each 1,

n n
Tl‘(l‘l) = ETI‘]Fd/IE‘(xz) = —Eal
_ n _ nadq—1
Tr(z; ') = < Tt /e (2; )= 4

Hence
naqg—1

P = (Gar) o (520 ) = wTr-a)o(n(-o)

and summing over the roots x;, then over the polynomials P of degree d|n, we
obtain (6).
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Now, we consider the case x is non-trivial. Denote S(x; ¥, ¢) = — > cp x(2)p(x)p(z )
and its associated companions .5,, and zeta function Z. We consider the same group
G C F(X). We define a character n by

1(h) = x(aa)(an)s ( d)

ad

The associated L-function is

Lis,m) =Y n(NMR) == " > nh) |¢ ™
h

d>0 \deg(h)=d

Ford=0,h=1and n(l) =1.

Ford=1,
S o =S X +a)= Y x@l@e(a) = St b, ).
deg(h)=1 aclF* aclF*
For d = 2,
Dolzu-1) = J Tr(ax) . Tr(by)
S xweter™) = 3 o) (Fleh) e (R0
yeF* yER*
B _ Tr(ax) Tr(by)
—Izy:x(w)x(y)e( b)) e ()
= X(a)T()x(=b)7(x)
= X(—a)x(b)q
For d > 3,
Yooy = Y X't aXT 4 taiaX +a)
e
=" Y x(@)i(a)d(aa1a”t) =0.
a1,aq4—1€F
a€F*

To deduce the similar identity as in (5), it suffices to show that
> dn(P)M = =S, (x; ¢, 9)-
d=deg(P)|n

Only difference in this case is that we have a multiplicative character x. Let P =
X4+ a X1 4. 4 a4_1X + aq be an irreducible polynomial with coefficients in
F, and z1,--- ,zq its roots.

n aq—1

n(P)? = (Sar) ( s )x<ad>"/d = (Tr(=))$(Tr(—a) )X (N(—1)).

Summing over roots and irreducible polynomials P of degree d|n, we obtain

Lemma 2. For a nontrivial multiplicative character x, we have
(7) Z=(1=50G1,0)q* + x(—a)x(b)g' )"
where P(x) =e (%), olx)=e (%).
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2. STEPANOV’S METHOD FOR HYPERELLIPTIC CURVES.

Let F be a finite field with ¢ element, of characteristic p. We will only consider
algebraic curves Cy over F given by equations of the type

(8) Cr:y® = f(z)

for some polynomial f € F[X] of degree m > 3. We assume moreover the following
condition

(9) The polynomial Y2 — f(X) € F[X,Y] is absolutely irreducible

Stepanov’s elementary method yields a good bound for the number of solutions
of C¢ over F.
Theorem 2. Assume that f € F[X] satisfies (9), and m = deg(f) > 3. If ¢ > 4m?,
then N = |Cy(F)| satisfies
|IN — q| < 8m,/q.

We need the following lemma which relies on Hilbert Satz 90.

Lemma 3. For anyn > 1 and any x € F,,, we have

(10) {y € Faly? —y =a}| =) _¢(Tr(z))
v

where the sum ranges over all additive characters of F and Tr is the trace F,, — F.

Denote the Kloosterman sum by

S(a, ) = = Y W(az +bx")

zeF*

for some a,b € F. We consider a and b as fixed and write g = aX + bX ~!. From
this lemma we deduce that

=Y Su(a i) =Y D> ¥(Trg(x))
P ¥ xz€Fx
= H{(z,y) € F}, x Fuly? —y = g(x)}| = Na
If ¢ = 1)g, the trivial character, we have S, (g, %) = 1 — ¢".
For v # )y, let ay, By be the roots of the Kloosterman sum S(14, %), so we have
oy By = q and
Sp(tas ) = agy + By,
for all n > 1.
We can therefore write

No=q"—1= > (af +Bp).
hF#po
We can transform the equation y? — y = g(x) into
Cap: ax2—(yq—y)x+b:0

Because p # 2, the number of solutions is equal to the number of solutions of the
discriminant equation

Dgyp: (y? — y)2 — 4ab = v?,
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i.e. N, =|Dgp(Fy,)|. This is of the form (9) with deg(f)= 2¢, and because 4ab # 0
it satisfies the assumptions of Theorem 2. Hence by Theorem 2 we have

|N, —q"| < 16q1+”/2

if n is large enough, so that ¢” > 16q. This gives a sharp estimate for the roots
vy, By, ON average

1
(11) =13 (af +B8y)| < 16972
q v#Po

for n large enough. The following lemma shows that the individual roots must be
of modulus < ,/q.

Lemma 4. Let wy,--- ,w, be complex numbers, A, B positive real numbers and
assume that

> g < apr
j=1

holds for all integers n large enough. Then |w;| < B for all j.
Proof. The proof uses the identity

flz) = Z(Zw?)z" - Z 1 —10-)]‘2'

n=1l j J

Compare the radius of convergence on each side. (I

For a nontrivial multiplicative character x, we denote the Kloosterman sum by

SOt ts) = — 3 x(@)(g(a)).

xEF*
Then we have

(12) =3 Sulva) = 3 x(Na) S o (Tr(g ().
P P

z€FY

Note that the inner sum is ¢" + O(q"/ 2) by Theorem 2. We sum this equation over
all Dirichlet character mod p, then we have

N, = =38 Sl ta ) = S50 S x(Na)y(Tr(g(2)).
X

X ¢ zcFr

This sum on the right-hand side denotes the number of solutions in the following
equations

-1 _
yi o =,

21— z=ax+ —.
x

with z,y € F}, z € F,,.
We state more general version of Theorem 2, which is an extension of Stepanov’s
elementary methods due to Schmidt.

Theorem 3. Suppose f(X,Y) € F [X,Y] is absolutely irreducible and of total
degree d > 0, let N be the number of zeros of f in Fg. If ¢ > 250d°, then

IN — gl < V2d*/%q"2.
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The equations we considered before can be put together as
b

q _ , — 0,91
z z=ay + i1
with y € F}, z € F,,. In polynomial form, this is
—y2 2 (21— )yt —a=0.

The polynomial on the left-hand side is absolutely irreducible by Eisenstein’s crite-
rion. Thus, we can apply Theorem 3 and obtain the number of solutions N of this
equation is ¢" + O(¢"/?).

When Y is trivial, we have an estimate for the inner sum ¢" + O(q"/ 2), hence we
have

(13) SN x(Na)w(Tr(g(x))) = O(q™?).
X#xo ¢ x€Fy
Let oy, By, be the roots of Kloosterman sum S(x; %, %) so that we have
Sn(X7 1/%1, wb) = a;,q/; + B;,w

Then Lemma 4 and (13) give us the estimates |o | < /@, [By,w| < /g This
concludes the proof of Theorem 1.
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