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Let 7(n) = > 1 be the divisor function, a # 0 be fixed integer. We define the following constants, where
dln
~ is the Euler-Mascheroni constant.
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Theorem 1 (1931). [T] Under GRH for Dirichlet L-functions,
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Theorem 2 (1963). [L] Unconditionally by dispersion method,
B xloglogx
2 S+ a) = Cilage + 0 (THEEET).
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Halberstam(1967) [H] gave a simpler unconditional proof using Bombieri-Vinogradov theorem and Brun-
Titchmarsh inequality.

Bombieri, Friedlander, and Iwaniec(1986) [BFI|, independently by Fouvry(1984) [F] obtained more pre-
cise formula

Theorem 3. [BFI] Let A > 0 be fized.

(3) > A(n)7(n+a) = Ci(a)zloga + (2Ca(a) — Ci(a))z + O (log:i‘:c) |

n<x
Using partial summation to above, we have

Corollary 1.

(4) Z 7(p +a) = Ci(a)r + 2C2(a)Li(z) + O < ’ ) .

log? =

p<x
This result heavily relies on Bombieri-Vinogradov type result without having absolute value in the sum.

Theorem 4. [BFI] Let A > 0, then there is B > 0 depending on A such that
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By partial summation, we have
Corollary 2. Let A > 0, then there is B > 0 depending on A such that
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In view of this corollary, it looks like the moduli ¢ came almost close to x. However, up to the full
moduli g < z, the estimate is very different. In fact, from the following lemma and Corollary 1:

Lemma 1. |
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We obtain the following asymptotic for the full moduli.
Corollary 3.

(7) 3 (m;q, a) — m) = (Ca(a) — C1(a))Li(z) + O <IO;$> :

g<z
(g,a)=1

For the primes in arithmetic progressions, A. T. Felix (2011) [Fe| proved that
Theorem 5. [Fe| Fiz integers a # 0 and k > 1. Then

(8) > T<p;a>zcl:m+o<lozx>’
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p=a mod k

=@ [ <1+pf__pl+1>.
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where

Let ¢' = [],,p =rad(q). D. Fiorilli (2012) [Fi] obtained more precise formula. As a special case of [Fe,
Theorem 2.4], we have
Theorem 6. [Fi] Fiz integers a #0 and ¢ > 1. Then
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where
x (¢)?
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We apply partial summation as before, then we have

Corollary 4.

aw 3 7 (pk“> = ZCa(a,k) + % (202(a, k) + Ci(a, k) log ((’“I;)Z» Li(z) + O ( a ) .

log” x

p<x
p=a mod k

We write C; = C1(1) and Cy = C3(1). In 2015, Sary Drappeau [D] obtained a power-saving error term
under the GRH.

Theorem 7. [D] Assume the GRH. For some ¢ > 0, we have
(11) Z A(n)T(n —1) = Cizlogx + (2C2 — C1)z + O (331_5> .

n<x
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It would be natural to consider similar problems for k-divisor functions 73 (n). Also in the paper [D], it
was mentioned that current methods are not sufficient to obtain asymptotic formulas of qu Tk(p — 1)
for k > 3. On the other hand, in an expository note by D. Koukoulopoulos (2015) [K, Exercise 4.3.2],

Theorem 8. Unconditionally, we have

(12) ZTg(p—Fa)xa:log:ﬁH(l—;)z.

p<z pla

Assuming Elliott-Halberstam Conjecture (EH), there is an absolute constant C(a) such that
(13) ZTg(p—i—a) = C(a)rlogz + O(x).

p<w
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