THE HISTORY OF TITCHMARSH DIVISOR PROBLEM

KIM, SUNGJIN

Let $\tau(n) = \sum_{d|n} 1$ be the divisor function, $a \neq 0$ be fixed integer. We define the following constants, where γ is the Euler-Mascheroni constant.

$$C_1(a) = \frac{\zeta(2)\zeta(3)}{\zeta(6)} \prod_{p|a} \left(1 - \frac{p}{p^2 - p + 1} \right)$$

$$C_2(a) = C_1(a) \left(\gamma - \sum_{p} \frac{\log p}{p^2 - p + 1} + \sum_{p|a} \frac{p^2 \log p}{(p - 1)(p^2 - p + 1)} \right)$$

Theorem 1 (1931). [T] Under GRH for Dirichlet L-functions,

(1)
$$\sum_{p \le x} \tau(p+a) = C_1(a)x + O\left(\frac{x \log \log x}{\log x}\right).$$

Theorem 2 (1963). [L] Unconditionally by dispersion method,

(2)
$$\sum_{p \le x} \tau(p+a) = C_1(a)x + O\left(\frac{x \log \log x}{\log x}\right).$$

Halberstam(1967) [H] gave a simpler unconditional proof using Bombieri-Vinogradov theorem and Brun-Titchmarsh inequality.

Bombieri, Friedlander, and Iwaniec(1986) [BFI], independently by Fouvry(1984) [F] obtained more precise formula

Theorem 3. [BFI] Let A > 0 be fixed.

(3)
$$\sum_{n \le x} \Lambda(n)\tau(n+a) = C_1(a)x \log x + (2C_2(a) - C_1(a))x + O\left(\frac{x}{\log^A x}\right).$$

Using partial summation to above, we have

Corollary 1.

(4)
$$\sum_{p \le x} \tau(p+a) = C_1(a)x + 2C_2(a)\operatorname{Li}(x) + O\left(\frac{x}{\log^A x}\right).$$

This result heavily relies on Bombieri-Vinogradov type result without having absolute value in the sum.

Theorem 4. [BFI] Let A > 0, then there is B > 0 depending on A such that

(5)
$$\sum_{\substack{q \le x(\log x)^{-B} \\ (q,a)=1}} \left(\psi(x;q,a) - \frac{x}{\phi(q)} \right) \ll_{a,A} \frac{x}{\log^A x}.$$

By partial summation, we have

Corollary 2. Let A > 0, then there is B > 0 depending on A such that

(6)
$$\sum_{\substack{q \le x(\log x)^{-B} \\ (q,a)=1}} \left(\pi(x;q,a) - \frac{\pi(x)}{\phi(q)} \right) \ll_{a,A} \frac{x}{\log^A x}.$$

KIM, SUNGJIN

In view of this corollary, it looks like the moduli q came almost close to x. However, up to the full moduli $q \le x$, the estimate is very different. In fact, from the following lemma and Corollary 1:

Lemma 1.

$$\sum_{\substack{n \le x \\ (n,a)=1}} \frac{1}{\phi(n)} = C_1(a) \log x + C_2(a) + O\left(\frac{\log x}{x}\right).$$

We obtain the following asymptotic for the full moduli.

Corollary 3.

(7)
$$\sum_{\substack{q \le x \\ (q,a)=1}} \left(\pi(x;q,a) - \frac{\pi(x)}{\phi(q)} \right) = (C_2(a) - C_1(a)) \operatorname{Li}(x) + O\left(\frac{x}{\log^2 x}\right).$$

For the primes in arithmetic progressions, A. T. Felix (2011) [Fe] proved that **Theorem 5.** [Fe] Fix integers $a \neq 0$ and $k \geq 1$. Then

(8)
$$\sum_{\substack{p \le x \\ p \equiv a \bmod k}} \tau\left(\frac{p-a}{k}\right) = \frac{c_k}{k}x + O\left(\frac{x}{\log x}\right),$$

where

$$c_k = C_1(a) \prod_{p|k} \left(1 + \frac{p-1}{p^2 - p + 1} \right).$$

Let $q' = \prod_{p|q} p = \text{rad}(q)$. D. Fiorilli (2012) [Fi] obtained more precise formula. As a special case of [Fe, Theorem 2.4], we have

Theorem 6. [Fi] Fix integers $a \neq 0$ and $q \geq 1$. Then

(9)
$$\left| \sum_{|a|/q < m < x/q} \Lambda(qm+a)\tau(m) - M.T \right| \ll \frac{x}{\log^A x},$$

where

$$M.T = \frac{x}{q} \left(C_1(a,q) \log x + 2C_2(a,q) + C_1(a,q) \log \left(\frac{(q')^2}{eq} \right) \right),$$

$$C_1(a,q) = \frac{\zeta(2)\zeta(3)}{\zeta(6)} \prod_{p|a} \left(1 - \frac{p}{p^2 - p + 1} \right) \prod_{p|q} \left(1 + \frac{p - 1}{p^2 - p + 1} \right),$$

and

$$C_2(a,q) = C_1(a,q) \left(\gamma - \sum_p \frac{\log p}{p^2 - p + 1} + \sum_{p|a} \frac{p^2 \log p}{(p-1)(p^2 - p + 1)} - \sum_{p|q} \frac{(p-1)p \log p}{p^2 - p + 1} \right).$$

We apply partial summation as before, then we have

Corollary 4.

(10)
$$\sum_{\substack{p \le x \\ n \equiv a \mod k}} \tau\left(\frac{p-a}{k}\right) = \frac{x}{k}C_1(a,k) + \frac{1}{k}\left(2C_2(a,k) + C_1(a,k)\log\left(\frac{(k')^2}{k}\right)\right)\operatorname{Li}(x) + O\left(\frac{x}{\log^A x}\right).$$

We write $C_1 = C_1(1)$ and $C_2 = C_2(1)$. In 2015, Sary Drappeau [D] obtained a power-saving error term under the GRH.

Theorem 7. [D] Assume the GRH. For some $\delta > 0$, we have

(11)
$$\sum_{n \le x} \Lambda(n)\tau(n-1) = C_1 x \log x + (2C_2 - C_1)x + O\left(x^{1-\delta}\right).$$

It would be natural to consider similar problems for k-divisor functions $\tau_k(n)$. Also in the paper [D], it was mentioned that current methods are not sufficient to obtain asymptotic formulas of $\sum_{p \leq x} \tau_k(p-1)$ for $k \geq 3$. On the other hand, in an expository note by D. Koukoulopoulos (2015) [K, Exercise 4.3.2],

Theorem 8. Unconditionally, we have

(12)
$$\sum_{p \le x} \tau_3(p+a) \approx x \log x \prod_{p|a} \left(1 - \frac{1}{p}\right)^2.$$

Assuming Elliott-Halberstam Conjecture (EH), there is an absolute constant C(a) such that

(13)
$$\sum_{p \le x} \tau_3(p+a) = C(a)x \log x + O(x).$$

References

- [BFI] E. Bombieri, J. Friedlander, and H. Iwaniec, *Primes in Arithmetic Progressions to Large Moduli*, Acta Math. 156 (1986), 203–251.
- [D] S. Drappeau, Sums of Kloosterman Sums in Arithmetic Progressions, and the Error Term in the Dispersion Method, preprint, arxiv:1504.05549v3
- [F] E. Fouvry, Sur le Probleme des Diviseurs de Titchmarsh, J. Reine Agnew. Math. 357 (1984), 51-76.
- [Fe] A. T. Felix, Generalizing the Titchmarsh Divisor Problem, 17 pages, International Journal of Number Theory, Vol. 8, No. 3, (2012), pp. 613–629.
- [Fi] A. Fiorilli, On a Theorem of Bombieri, Friedlander and Iwaniec, 15 pages. Canad. J. Math. 64 (2012), 1019–1035.
- [H] H. Halberstam, Footnote to the Titchmarsh-Linnik divisor problem, Proc. Amer. Math. Soc. 18 (1967), 187–188.
- [K] D. Koukoulopoulos, Sieve Methods, (2015), available at http://www.dms.umontreal.ca/ koukoulo/documents/notes/sievemethods.pdf
- [L] J. V. Linnik, The Dispersion Method in Binary Additive Problems, Transl. Math. monographs, vol. 4, Amer. Math. Soc., Providence, Rhode Island, 1963.
- [T] E.C. Titchmarsh, A Divisor Problem, Rend. di Palermo 54 (1931), 414–429.