THE AVERAGE NUMBER OF DIVISORS OF THE EULER FUNCTION

KIM, SUNGJIN

Abstract

The upper bound and the lower bound of average numbers of divisors of Euler Phi function and Carmichael Lambda function are obtained by Luca and Pomerance (see [LP]). We improve the lower bound and provide a heuristic argument which suggests that the upper bound given by [LP] is indeed close to the truth.

1. Introduction

${ }^{1}$ Let $n \geq 1$ be an integer. Denote by $\phi(n), \lambda(n)$, the Euler Phi function and the Carmichael Lambda function, which output the order and the exponent of the group $(\mathbb{Z} / n \mathbb{Z})^{*}$ respectively. We use p (or p_{i}), $q\left(\right.$ or $\left.q_{i}\right)$ to denote the prime divisors of n and $\phi(n)$ respectively. Then it is clear that $\lambda(n) \mid \phi(n)$ and the set of prime divisors q of $\phi(n)$ and that of $\lambda(n)$ are identical. Let $n=p_{1}^{e_{1}} \cdots p_{r}^{e_{r}}$ be a prime factorization of n. Then we can compute $\phi(n)$ and $\lambda(n)$ as follows:

$$
\phi(n)=\prod_{i=1}^{r} \phi\left(p_{i}^{e_{i}}\right), \text { and } \lambda(n)=\operatorname{lcm}\left(\lambda\left(p_{1}^{e_{1}}\right), \ldots, \lambda\left(p_{r}^{e_{r}}\right)\right)
$$

where $\phi\left(p_{i}^{e_{i}}\right)=p_{i}^{e_{i}-1}\left(p_{i}-1\right)$ and $\lambda\left(p_{i}^{e_{i}}\right)=\phi\left(p_{i}^{e_{i}}\right)$ if $p_{i}>2$ or $p_{i}=2$ and $e_{i}=1,2$, and $\lambda\left(2^{e}\right)=2^{e-2}$ if $e \geq 3$.
From the work of Hardy and Ramanujan [HR], it is well known that the normal order of $\tau(n)$ is $(\log n)^{\log 2+o(1)}$. On the other hand, the average order $\frac{1}{x} \sum_{n \leq x} \tau(n)$ is known to be $\log x+O(1)$ which is somewhat larger than the normal order. For $\tau(\lambda(n))$ and $\tau(\phi(n))$, the normal orders of these follows from [EP] that they are $2^{\left(\frac{1}{2}+o(1)\right)(\log \log n)^{2}}$. On the contrary, the work of Luca and Pomerance [LP] showed that their average order is significantly larger than the normal order. Define $F(x)=\exp \left(\sqrt{\frac{\log x}{\log \log x}}\right)$. In [LP, Theorem 1,2], they proved that

$$
F(x)^{b_{1}+o(1)} \leq \frac{1}{x} \sum_{n \leq x} \tau(\lambda(n)) \leq \frac{1}{x} \sum_{n \leq x} \tau(\phi(n)) \leq F(x)^{b_{2}+o(1)}
$$

as $x \rightarrow \infty$, where $b_{1}=\frac{1}{7} e^{-\gamma / 2}$ and $b_{2}=2 \sqrt{2} e^{-\gamma / 2}$.
In this paper we are able to raise the constant b_{1} so that it is almost b_{2}, differing only by a factor $\sqrt{2}$. Here, we take advantage of the inequalities of Bombieri-Vinogradov type regarding primes in arithmetic progression (see [BFI, Theorem 9], also [F, Theorem 2.1]). In this paper, we apply the following version which can be obtained from $\left[\mathrm{F}\right.$, Theorem 2.1]: For $(a, n)=1$, we write $E(x ; n, a):=\pi(x ; n, a)-\frac{\pi(x)}{\phi(n)}$. Let $0<\lambda<1 / 10$. Let $R \leq x^{\lambda}$. For some $B=B(A)>0, M=\log ^{B} x$, and $Q=x / M$,

$$
\sum_{\substack{r \leq R \\(r, a)=1}}\left|\sum_{\substack{q \leq \frac{Q}{v} \\(q, a)=1}} E(x ; q r, a)\right|<_{A, \lambda} x \log ^{-A} x .
$$

In fact, $[\mathrm{F}$, Theorem 2.1] builds on [BFI, Theorem 9] and obtains a more accurate estimate, but we only need the above form for our purpose. Note that one of the important differences between [BFI, Theorem $9]$ and $\left[\mathrm{F}\right.$, Theorem 2.1] is the presence of $\frac{Q}{r}$ in the inner sum. This will be essential in the proof of our lemmas (see Lemma 2.2 and 2.3).

[^0]It is interesting to note that one of these improvements is related to a Poisson distribution that we can obtain from prime numbers. Another point of improvement comes from the idea in the proof of Gauss' Circle Problem.

Theorem 1.1. As $x \rightarrow \infty$, we have

$$
\sum_{n \leq x} \tau(\phi(n)) \geq \sum_{n \leq x} \tau(\lambda(n)) \geq x \exp \left(2 e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log \log x}}(1+o(1))\right) .
$$

It is clear from $\lambda(n) \mid \phi(n)$ that $\sum_{n \leq x} \tau(\lambda(n)) \leq \sum_{n \leq x} \tau(\phi(n))$. A natural question to ask is how large is the latter compared to the former. Luca and Pomerance proved in [LP, Theorem 2] that

$$
\frac{1}{x} \sum_{n \leq x} \tau(\lambda(n))=o\left(\max _{y \leq x} \frac{1}{y} \sum_{n \leq y} \tau(\phi(n))\right) .
$$

Moreover, they mentioned that a stronger statement

$$
\frac{1}{x} \sum_{n \leq x} \tau(\lambda(n))=o\left(\frac{1}{x} \sum_{n \leq x} \tau(\phi(n))\right)
$$

is probably true, but they did not have the proof. Here, we prove that this statement is indeed true. As in the proof of [LP, Theorem 2], we take advantage of the fact that prime 2 appears rarely in the factorization of $\lambda(n)$ than in the factorization of $\phi(n)$.

Theorem 1.2. As $x \rightarrow \infty$, we have

$$
\sum_{n \leq x} \tau(\lambda(n))=o\left(\sum_{n \leq x} \tau(\phi(n))\right)
$$

Finally, we give a heuristic argument suggests that the constant in the upper bound is indeed optimal. Here, we try to extend the method in the proof of Theorem 1.1 by devising a binomial distribution model. However, we were unable to prove it. The main difficulty is due to the short range of $u\left(u<\log ^{A_{1}} x\right)$ in the lemmas (see Lemma 2.1, 2.3, Corollary 2.1, and 2.2).

Conjecture 1.1. As $x \rightarrow \infty$, we have

$$
\sum_{n \leq x} \tau(\lambda(n))=x \exp \left(2 \sqrt{2} e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log \log x}}(1+o(1))\right)
$$

Throughout this paper, x is a positive real number, n, k are positive integers, and p, q are prime numbers. We use Landau symbols O and o. Also, we write $f(x) \asymp g(x)$ for positive functions f and g, if $f(x)=O(g(x))$ and $g(x)=O(f(x))$. We will also use Vinogradov symbols \ll and \gg. We write the iterated $\operatorname{logarithms}$ as $\log _{2} x=\log \log x$ and $\log _{3} x=\log \log \log x$. The notations (a, b) and $[a, b]$ mean the greatest common divisor and the least common multiple of a and b respectively. We write $P_{z}=\prod_{p \leq z} p$. We also use the following restricted divisor functions:

$$
\tau_{z}(n):=\prod_{\substack{p^{e} \| n \\ p>z}} \tau\left(p^{e}\right), \quad \tau_{z, w}(n):=\prod_{\substack{p^{e} \| n \\ z<p \leq w}} \tau\left(p^{e}\right), \quad \text { and } \quad \tau_{z}^{\prime}(n):=\prod_{\substack{p^{e} \| n \\ p \leq z}} \tau\left(p^{e}\right) .
$$

Moreover, for $n>1$, denote by $p(n)$ the smallest prime factor of n.
Acknowledgement. The author would like to thank Carl Pomerance for encouraging him to work on this problem, and numerous valuable comments and conversations.

2. Lemmas

The following lemma is [LP, Lemma3] with a slightly relaxed z, and it is essential toward proving the theorem. This is stated and proved with the Chebyshev functions $\psi(x):=\sum_{n \leq x} \Lambda(n)$ and $\psi(x ; q, a):=$ $\sum_{n \leq x, n \equiv a \bmod q} \Lambda(n)$ in [LP2]. Here, we use the prime counting functions $\pi(x):=\sum_{p \leq x} 1$ and $\pi(x ; q, a):=$ $\sum_{p \leq x, p \equiv a \bmod q} 1$ instead. We are allowed to do these replacements by applying the partial summation.
Lemma 2.1. Let $0<\lambda<\frac{1}{10}$. Assume that $z \leq \lambda \log x$. Then for any $A>0$, there is $B=B(A)>0$ such that for $M=\log ^{B} x$, and $Q=\frac{x}{M}$,

$$
\begin{equation*}
E_{z}(x):=\sum_{r \mid P_{z}} \mu(r) \sum_{\substack{n \leq Q \\ r \mid n}}\left(\pi(x ; n, 1)-\frac{\pi(x)}{\phi(n)}\right)<_{A, \lambda} \frac{x}{\log ^{A} x} . \tag{1}
\end{equation*}
$$

Let $0<\lambda<\frac{1}{10}$. Assume that u is a positive integer with $p(u)>z, u<(\log x)^{A_{1}}$ and $\tau(u)<A_{1}$. Then for any $A>0$, there is $B=B\left(A, A_{1}\right)>0$ such that for $M=\log ^{B} x$, and $Q=\frac{x}{M}$,

$$
\begin{equation*}
E_{u, z}(x):=\sum_{r \mid P_{z}} \mu(r) \sum_{\substack{n \leq Q \\ r \mid n}}\left(\pi(x ;[u, n], 1)-\frac{\pi(x)}{\phi([u, n])}\right)<_{A, A_{1}, \lambda} \frac{x}{\log ^{A} x} . \tag{2}
\end{equation*}
$$

Proof of (1). For $(a, n)=1$, we write $E(x ; n, a):=\pi(x ; n, a)-\frac{\pi(x)}{\phi(n)}$. If $r \mid P_{z}$, we have by the Prime Number Theorem, $r \leq R:=P_{z}=\exp (z+o(z)) \leq x^{\lambda^{\prime}}$ with $0<\lambda^{\prime}<1 / 10$. By partial summation and diadically applying [F, Theorem 2.1], we have for $B=B(A)>0, M=\log ^{B} x$, and $Q=x / M$,

$$
\begin{equation*}
\sum_{\substack{r \leq R \\(r, a)=1}}\left|\sum_{\substack{q \leq \frac{Q}{r} \\(q, a)=1}} E(x ; q r, a)\right|<_{A, \lambda} \frac{x}{\log ^{A} x} \tag{3}
\end{equation*}
$$

Taking $a=1$ and $|\mu(r)| \leq 1$, (1) follows.
Proof of (2). Let $d \leq x^{\epsilon}$ so that $d R \leq x^{\lambda^{\prime}}$ with $0<\lambda^{\prime}<1 / 10$. By (3), there exist $B=B(A)>0$ such that we have for $M=\log ^{B} x$ and $Q=x / M$,

$$
\begin{equation*}
\sum_{r \leq R}\left|\sum_{q \leq \frac{Q}{r}} E(x ; d q r, 1)\right|=\sum_{\substack{r \leq d R \\ r \equiv 0 \bmod d}}\left|\sum_{q \leq \frac{Q}{r}} E(x ; q r, 1)\right| \leq \sum_{r \leq d R}\left|\sum_{q \leq \frac{Q}{r}} E(x ; q r, 1)\right|<_{A, \lambda} \frac{x}{\log ^{A} x} . \tag{4}
\end{equation*}
$$

By $(u, r)=1$, we have $[u, n]=[u, q r]=r[u, q]=r u q /(u, q)$. We partition the set of $q \leq \frac{Q}{r}$ as $\bigcup_{d \mid u} A_{d}$, where $q \in A_{d}$ if and only if $(u, q)=d$. Let $B_{Q, d}=\left\{q \leq \frac{Q}{r}: q \equiv 0 \bmod d\right\}$. By inclusion-exclusion, we have for any $d \mid u$,

$$
\sum_{q \in A_{d}} E\left(x ; \frac{r u q}{d}, 1\right)=\sum_{s \left\lvert\, \frac{u}{d}\right.} \mu(s) \sum_{q \in B_{Q, d s}} E\left(x ; \frac{r u q}{d}, 1\right) .
$$

It is clear that

$$
\sum_{q \in B_{Q, d s}} E\left(x ; \frac{r u q}{d}, 1\right)=\sum_{q \in B_{\frac{u Q}{d}, u s}} E(x ; q r, 1) .
$$

Since $r \leq R:=P_{z}<x^{\lambda^{\prime}}$ with $\lambda^{\prime}<\frac{1}{10}, \frac{u Q}{d} \leq Q \log ^{A_{1}} x$, and $u s<\log ^{2 A_{1}} x<x^{\epsilon}$, we have by (4),

$$
\sum_{r \leq R}\left|\sum_{q \in B_{\frac{u Q}{d}, u s}} E(x ; q r, 1)\right|<_{A, A_{1}, \lambda} \frac{x}{\log ^{A} x}
$$

with a suitable choice of $B=B\left(A, A_{1}\right)$. Then

$$
\begin{aligned}
\sum_{r \leq R}\left|\sum_{q \in A_{d}} E\left(x ; \frac{r u q}{d}, 1\right)\right| & =\sum_{r \leq R}\left|\sum_{s \left\lvert\, \frac{u}{d}\right.} \mu(s) \sum_{q \in B_{Q, d s}} E\left(x ; \frac{r u q}{d}, 1\right)\right| \\
& \leq \sum_{s \left\lvert\, \frac{u}{d}\right.} \sum_{r \leq R}\left|\sum_{q \in B_{Q, d s}} E\left(x ; \frac{r u q}{d}, 1\right)\right| \\
& \ll A_{A, A_{1}, \lambda} \tau\left(\frac{u}{d}\right) \frac{x}{\log ^{A} x} .
\end{aligned}
$$

Thus, summing over $d \mid u$, we have

$$
\begin{aligned}
\left|\sum_{r \mid P_{z}} \mu(r) \sum_{q \leq \frac{Q}{r}} E(x ;[u, q r], 1)\right| & \leq \sum_{d \mid u} \sum_{r \leq R}\left|\sum_{q \in A_{d}} E\left(x ; \frac{r u q}{d}, 1\right)\right| \\
& \ll A_{A, A_{1}, \lambda}(\tau(u))^{2} \frac{x}{\log ^{A} x} \ll{ }_{A, A_{1}, \lambda} \frac{x}{\log ^{A} x} .
\end{aligned}
$$

Thus, we have the result (2).
The following is [LP, Lemma 5] with a slightly relaxed z.
Lemma 2.2. Let $0<\lambda<\frac{1}{10}$, and $1<z \leq \lambda \log x$. Let $c_{1}=e^{-\gamma}$. Then we have

$$
\begin{equation*}
R_{z}(x):=\sum_{p \leq x} \tau_{z}(p-1)=c_{1} \frac{x}{\log z}+O\left(\frac{x}{\log ^{2} z}\right), \tag{5}
\end{equation*}
$$

and for $1<z \leq \frac{\log x}{\log _{2}^{2} x}$,

$$
\begin{equation*}
S_{z}(x):=\sum_{p \leq x} \frac{\tau_{z}(p-1)}{p}=c_{1} \frac{\log x}{\log z}+O\left(\frac{\log x}{\log ^{2} z}\right) . \tag{6}
\end{equation*}
$$

Proof of (5). Take $A=2$ and the corresponding $B(A)$ and M in Lemma 2.1(1). Then by inclusionexclusion,

$$
R_{z}(x)=\sum_{d \in D_{z}(x)} \pi(x ; d, 1)=\sum_{d \in D_{z}\left(\frac{x}{M}\right)} \pi(x ; d, 1)+\sum_{r \mid P_{z}} \mu(r) \sum_{\frac{x}{r M}<q \leq \frac{x}{r}} \pi(x ; q r, 1)=R_{1}+R_{2}, \text { say. }
$$

By [LP, Lemma 4] and Lemma 2.1(1),

$$
R_{1}=\sum_{d \in D_{z}\left(\frac{x}{M}\right)} \frac{\pi(x)}{\phi(d)}+\sum_{r \mid P_{z}} \mu(r) \sum_{q \leq \frac{x}{r M}} E(x ; q r, 1)=c_{1} \frac{x}{\log z}+O\left(\frac{x}{\log ^{2} z}\right)+O\left(\frac{x}{\log ^{2} x}\right) .
$$

By divisor-switching technique and Brun-Titchmarsh inequality as in [LP2], we have

$$
R_{2} \ll \sum_{r \mid P_{z}} \sum_{k \leq M} \pi(x ; r k, 1) \ll \sum_{r \mid P_{z}} \sum_{k \leq M} \frac{x}{\phi(r k) \log x} \ll \frac{x \log z \log M}{\log x} \ll \frac{x}{\log ^{2} z} .
$$

Therefore, (5) follows.
Proof of (6). By partial summation,

$$
S_{z}(x)=\left.\frac{R_{z}(t)}{t}\right|_{2} ^{x}+\int_{2}^{x} \frac{R_{z}(t)}{t^{2}} d t .
$$

We split the integral at $z=\lambda \log t$. Then by (4),

$$
\int_{z \leq \lambda \log t} \frac{R_{z}(t)}{t^{2}} d t=\int_{e^{z / \lambda}}^{x}\left(c_{1} \frac{t}{\log z}+O\left(\frac{t}{\log ^{2} z}\right)\right) \frac{d t}{t^{2}}=c_{1} \frac{\log x}{\log z}+O\left(\frac{\log x}{\log ^{2} z}\right) .
$$

On the other hand, by the trivial bound $R_{z}(t) \ll t$,

$$
\int_{z>\lambda \log t} \frac{R_{z}(t)}{t^{2}} d t \ll \int_{2}^{e^{z / \lambda}} t \frac{d t}{t^{2}} \ll z
$$

Since $z \log ^{2} z \ll \log x$, (6) follows.
The following is [LP, Lemma 6] with a wider range of z. This relaxes the rather severe restriction $z \leq \frac{\sqrt{\log ^{2} x}}{\log _{2}^{6} x}$.

Lemma 2.3. Let $1 \leq u \leq x$ be any positive integer. Then

$$
\begin{equation*}
R_{u, z}(x):=\sum_{\substack{p \leq x \\ p \equiv 1 \bmod u}} \tau_{z}(p-1) \ll \frac{\tau(u)}{\phi(u)} x, \quad S_{u, z}(x):=\sum_{\substack{p \leq x \\ p \equiv 1 \bmod u}} \frac{\tau_{z}(p-1)}{p} \ll \frac{\tau(u)}{\phi(u)} \log x, \tag{7}
\end{equation*}
$$

and $\phi(u)$ can be replaced by u if $p(u)>z$ and $\tau(u)<A_{1}$.
Assume that u is a positive integer with $p(u)>z, u<(\log x)^{A_{1}}$ and $\tau(u)<A_{1}$. Then for $z \leq \lambda \log x$,

$$
\begin{equation*}
R_{u, z}(x)=\frac{\tau(u)}{u} R_{z}(x)\left(1+O\left(\frac{1}{\log z}\right)\right), \tag{8}
\end{equation*}
$$

and for $z \leq \frac{\log x}{\log _{2}^{2} x}$,

$$
\begin{equation*}
S_{u, z}(x)=\frac{\tau(u)}{u} S_{z}(x)\left(1+O\left(\frac{1}{\log z}\right)\right) \tag{9}
\end{equation*}
$$

Proof of (7). This is a uniform version of [Pe, Lemma 3.7]. We apply Dirichlet's hyperbola method as it was done in [Pe, Lemma 3.7]. First, we see that

$$
R_{u, z}(x) \leq \sum_{\substack{p \leq x \\ p \equiv 1 \bmod u}} \tau(p-1) \leq \sum_{\substack{p \leq x \\ p \equiv 1 \bmod u}} \tau\left(\frac{p-1}{u}\right) \tau(u) \leq 2 \tau(u) \sum_{k \leq \sqrt{\frac{x}{u}}} \pi(x ; k u, 1) .
$$

Since the sum is zero for $x \leq u$, we may assume that $x>u$. By Brun-Titchmarsh inequality,

$$
\pi(x ; k u, 1) \leq \frac{2 x}{\phi(k u) \log \left(\frac{x}{k u}\right)} \leq \frac{4 x}{\phi(u) \phi(k) \log \frac{x}{u}} .
$$

Thus, summing over k gives

$$
\sum_{k \leq \sqrt{\frac{x}{u}}} \pi(x ; k u, 1) \leq \frac{8 x}{\phi(u)} \sum_{d=1}^{\infty} \frac{\mu^{2}(d)}{d \phi(d)}
$$

Therefore, we have the result. The estimate for $S_{u, z}$ follows from partial summation.
We remark that for u with $p(u)>z$,

$$
\frac{u \phi(d)}{\phi(u d)}=\prod_{p \mid u, p \nmid d}\left(1-\frac{1}{p}\right)^{-1}=1+O\left(\frac{\tau(u)}{z}\right), \quad \frac{1}{\phi(u)}=\frac{1}{u} \prod_{p \mid u}\left(1-\frac{1}{p}\right)^{-1}=\frac{1}{u}\left(1+O\left(\frac{\tau(u)}{z}\right)\right) .
$$

Therefore, $\phi(u)$ can be replaced by u if $p(u)>z$ and $\tau(u)<A_{1}$.
Proof of (8). We begin with

$$
R_{u, z}(x)=\sum_{d \in D_{z}(x)} \pi(x ;[u, d], 1)
$$

Let $A>0$ be a positive number that $\frac{x}{\log ^{A} x} \ll \frac{\tau(u)}{u} \frac{x}{\log ^{2} x}$, and $B(A)$ and M be the corresponding parameters depending on A in Lemma 2.1(2). By inclusion-exclusion,

$$
\sum_{d \in D_{z}(x)} \pi(x ;[u, d], 1)=\sum_{d \in D_{z}\left(\frac{x}{M}\right)} \pi(x ;[u, d], 1)+\sum_{r \mid P_{z}} \mu(r) \sum_{\frac{x}{r M}<q \leq \frac{x}{r}} \pi(x ;[u, q r], 1)=R_{1}+R_{2}, \text { say. }
$$

By Lemma 2.1(2), we have

$$
R_{1}=\sum_{d \in D_{z}\left(\frac{x}{M}\right)} \frac{\pi(x)}{\phi([u, d])}+\sum_{r \mid P_{z}} \mu(r) \sum_{q \leq \frac{x}{r M}} E(x ;[u, q r], 1)=\sum_{d \in D_{z}\left(\frac{x}{M}\right)} \frac{\pi(x)}{\phi([u, d])}+O\left(\frac{\tau(u)}{u} \frac{x}{\log ^{2} x}\right)
$$

The first sum is treated as follows:

$$
\begin{aligned}
\sum_{d \in D_{z}\left(\frac{x}{M}\right)} \frac{\pi(x)}{\phi([u, d])} & =\sum_{d_{1} \in D_{z}\left(\frac{x}{u M}\right)} \frac{\pi(x) N_{d_{1}}}{\phi\left(u d_{1}\right)}+O\left(\pi(x) \sum_{\substack{\frac{x}{u M}<d_{1} \leq \frac{x}{M} \\
p\left(d_{1}\right)>z}} \frac{\tau(u)}{\phi\left(u d_{1}\right)}\right) \\
& =\sum_{d_{1} \in D_{z}\left(\frac{x}{u M}\right)} \frac{\pi(x) N_{d_{1}}}{\phi\left(u d_{1}\right)}+O\left(\pi(x) \frac{\tau(u) \log u}{\phi(u) \log z}\right) \\
& =\sum_{d_{1} \in D_{z}\left(\frac{x}{u M}\right)} \frac{\pi(x) N_{d_{1}}}{\phi\left(u d_{1}\right)}+O\left(\frac{\tau(u)}{u} \frac{x}{\log ^{2} z}\right)
\end{aligned}
$$

where $N_{d_{1}}=\left|\left\{d \in D_{z}\left(\frac{x}{M}\right):[u, d]=u d_{1}\right\}\right|$. Since $N_{d_{1}} \leq \tau(u)$ and $\phi\left(u d_{1}\right) \geq \phi(u) \phi\left(d_{1}\right)$, by [LP, Lemma 4],

$$
\sum_{d_{1} \in D_{z}\left(\frac{x}{u M}\right)} \frac{\pi(x) N_{d_{1}}}{\phi\left(u d_{1}\right)} \leq \frac{\tau(u)}{\phi(u)}\left(c_{1} \frac{x}{\log z}+O\left(\frac{x}{\log ^{2} z}\right)\right)
$$

Thus, we have the upper bound

$$
\sum_{d_{1} \in D_{z}\left(\frac{x}{u M}\right)} \frac{\pi(x) N_{d_{1}}}{\phi\left(u d_{1}\right)} \leq \frac{\tau(u)}{u}\left(c_{1} \frac{x}{\log z}+O\left(\frac{x}{\log ^{2} z}\right)\right)
$$

On the other hand, $N_{d_{1}}=\tau(u)$ if $\left(u, d_{1}\right)=1$. Then, we may apply [LP, Lemma 4] since $P(u) \leq \log ^{A_{1}} x$, we obtain that

$$
\begin{aligned}
\sum_{d_{1} \in D_{z}\left(\frac{x}{u M}\right)} \frac{\pi(x) N_{d_{1}}}{\phi\left(u d_{1}\right)} & \geq \frac{\tau(u)}{u}\left(\sum_{\substack{d_{1} \in D_{z}\left(\frac{x}{u M}\right) \\
\left(u, d_{1}\right)=1}} \frac{\pi(x)}{\phi\left(d_{1}\right)}+O\left(\frac{x}{\log ^{2} z}\right)\right) \\
& \geq \frac{\tau(u)}{u} \frac{\phi(u)}{u}\left(c_{1} \frac{x}{\log z}+O\left(\frac{x}{\log ^{2} z}\right)\right)
\end{aligned}
$$

Thus, we have the lower bound

$$
\sum_{d_{1} \in D_{z}\left(\frac{x}{u M}\right)} \frac{\pi(x) N_{d_{1}}}{\phi\left(u d_{1}\right)} \geq \frac{\tau(u)}{u}\left(c_{1} \frac{x}{\log z}+O\left(\frac{x}{\log ^{2} z}\right)\right)
$$

This shows that

$$
R_{1}=\frac{\tau(u)}{u}\left(c_{1} \frac{x}{\log z}+O\left(\frac{x}{\log ^{2} z}\right)\right)
$$

By divisor-switching technique and Brun-Titchmarsh inequality as in [LP2], we have

$$
\begin{aligned}
R_{2} & \ll \sum_{r \mid P_{z}} \sum_{d \mid u} \sum_{s \left\lvert\, \frac{u}{d}\right.} \sum_{\frac{x}{r M}<q \leq \frac{x}{r}} \pi\left(x ; \frac{u q r}{d}, 1\right) \\
& \ll \sum_{r \mid P_{z}} \sum_{d s \mid u} \sum_{s \left\lvert\, \frac{u}{d}\right.} \sum_{\frac{x}{d s r M}<q \leq \frac{x}{d s r}} \pi(x ; r u s q, 1) \\
& \ll \sum_{r \mid P_{z}} \sum_{d \mid u} \sum_{s \left\lvert\, \frac{u}{d}\right.} \sum_{k \leq \frac{d M}{u}} \pi(x ; r u s k, 1) \\
& \ll \sum_{r \mid P_{z}} \sum_{d \mid u} \sum_{s \left\lvert\, \frac{u}{d}\right.} \sum_{k \leq \frac{d M}{u}} \frac{x}{\phi(r u s k) \log x} \ll \tau(u) \frac{x \log z \log u \log M}{\phi(u) \log x} \ll \frac{\tau(u)}{u} \frac{x}{\log ^{2} z} .
\end{aligned}
$$

This completes the proof of (8).
Proof of (9). We use (7) and (8), and apply partial summation as in (6).
The following is used with inequality in [LP, Lemma 7]. Here, we obtain an equality that will be used frequently in this paper.
Lemma 2.4. Let $0<\lambda<\frac{1}{10}$. Fix $a>1$ and an integer $0 \leq B<\infty$. We use $z=\lambda \log x$ for the formula for R_{B} and $z=\frac{\log x}{\log _{2}^{2} x}$ for the formula for S_{B}. Let $I_{a}(x)=\left[z, z^{a}\right]$. Define

$$
\mathcal{U}_{B}=\left\{u: u \text { is a positive square-free integer consisted of exactly } B \text { prime divisors in } I_{a}(x)\right\} .
$$

Then we have

$$
R_{B}:=\sum_{u \in \mathcal{U}_{B}} R_{u, z}(x)=\frac{(2 \log a)^{B}}{B!} R_{z}(x)\left(1+O\left(\frac{1}{\log z}\right)\right),
$$

and

$$
S_{B}:=\sum_{u \in \mathcal{U}_{B}} S_{u, z}(x)=\frac{(2 \log a)^{B}}{B!} S_{z}(x)\left(1+O\left(\frac{1}{\log z}\right)\right) .
$$

Proof. We apply Lemma 2.3 with $u \in \mathcal{U}_{B}$. Note that $u \in \mathcal{U}_{B}$ satisfies the conditions for u in Lemma 2.3(8), (9). Then,

$$
\begin{aligned}
\sum_{u \in \mathcal{U}_{B}} R_{u, z}(x) & =\sum_{u \in \mathcal{U}_{B}} \frac{\tau(u)}{u} R_{z}(x)\left(1+O\left(\frac{1}{\log z}\right)\right) \\
& =\left(\frac{1}{B!}\left(\sum_{p \in I_{a}(x)} \frac{2}{p}\right)^{B}+O\left(\frac{1}{(B-2)!}\left(\sum_{p \in I_{a}(x)} \frac{4}{p^{2}}\right)\left(\sum_{p \in I_{a}(x)} \frac{2}{p}\right)^{B-2}\right)\right) R_{z}(x)\left(1+O\left(\frac{1}{\log z}\right)\right) \\
& =\left(\frac{1}{B!}\left(\sum_{p \in I_{a}(x)} \frac{2}{p}\right)^{B}+O\left(\frac{1}{z}\right)\right) R_{z}(x)\left(1+O\left(\frac{1}{\log z}\right)\right) \\
& =\frac{2^{B}}{B!}\left(\log \log z^{a}-\log \log z+O\left(\frac{1}{\log z}\right)\right)^{B} R_{z}(x)\left(1+O\left(\frac{1}{\log z}\right)\right) \\
& =\frac{(2 \log a)^{B}}{B!} R_{z}(x)\left(1+O\left(\frac{1}{\log z}\right)\right)
\end{aligned}
$$

The result for S_{B} can be obtained similarly.
Although we relaxed $z \leq \frac{\sqrt{\log x}}{\log _{2}^{6} x}$ to $z \leq \frac{\log x}{\log _{2}^{2} x}$, the range is still not enough for further use. We will see how this range can be relaxed to $\log ^{\frac{1}{A}} x<z \leq \log ^{A} x$ in Lemma 2.5. A probability mass function of a Poisson distribution comes up as certain densities.

Lemma 2.5. Let $0<\lambda<\frac{1}{10}$. Fix $a>1$ and an integer $0 \leq B<\infty$. We use $z=\lambda \log x$ for the formula for R_{B}^{\prime} and $z=\frac{\log x}{\log _{2}^{2} x}$ for the formula for S_{B}^{\prime}. Let $I_{a}(x)=\left(z, z^{a}\right]$. Define

$$
\tau_{z, z^{a}}(n)=\prod_{\substack{p^{e} \| n \\ p \in I_{a}(x)}} \tau\left(p^{e}\right), \quad w_{z, z^{a}}(n)=\left|\left\{p \mid n: p \in I_{a}(x)\right\}\right|,
$$

and

$$
R_{B}^{\prime}:=\sum_{\substack{p \leq x \\ w_{z, z}(p-1)=B}} \tau_{z}(p-1), \quad S_{B}^{\prime}:=\sum_{\substack{p \leq x \\ w_{z, z}(p-1)=B}} \frac{\tau_{z}(p-1)}{p} .
$$

Then as $x \rightarrow \infty$, we have

$$
\begin{equation*}
R_{B}^{\prime}=\frac{(2 \log a)^{B}}{B!a^{2}} R_{z}(x)(1+o(1)), \quad S_{B}^{\prime}=\frac{(2 \log a)^{B}}{B!a^{2}} S_{z}(x)(1+o(1)), \tag{10}
\end{equation*}
$$

and we have

$$
\begin{equation*}
R_{z^{a}}(x)=\frac{1}{a} R_{z}(x)(1+o(1)), \quad S_{z^{a}}(x)=\frac{1}{a} S_{z}(x)(1+o(1)) . \tag{11}
\end{equation*}
$$

Proof of (10). We remark that by (7), (8), (9), the contribution of primes p such that $p-1$ is divisible by a square of a prime $q>z$ is negligible. In fact, those contributions to $R_{z}(x)$ and $S_{z}(x)$ are $O\left(R_{z}(x) / z\right)$ and $O\left(S_{z}(x) / z\right)$ respectively. Thus, we assume that $p-1$ is not divisible by square of any prime $q>z$. By Lemma 2.4 and inclusion-exclusion principle,

$$
R_{B}^{\prime}=R_{B}-\binom{B+1}{1} R_{B+1}+\binom{B+2}{2} R_{B+2}-\binom{B+3}{3} R_{B+3}+-\cdots .
$$

Moreover, for any $k \geq 1$,

$$
\sum_{j=0}^{2 k-1}(-1)^{j}\binom{B+j}{j} R_{B+j} \leq R_{B}^{\prime} \leq \sum_{j=0}^{2 k}(-1)^{j}\binom{B+j}{j} R_{B+j} .
$$

Then dividing by $R_{z}(x)$ gives

$$
\sum_{j=0}^{2 k-1}(-1)^{j}\binom{B+j}{j} \frac{R_{B+j}}{R_{z}(x)} \leq \frac{R_{B}^{\prime}}{R_{z}(x)} \leq \sum_{j=0}^{2 k}(-1)^{j}\binom{B+j}{j} \frac{R_{B+j}}{R_{z}(x)} .
$$

By Lemma 2.4, we have

$$
\frac{(2 \log a)^{B}}{B!} \sum_{j=0}^{2 k-1}(-1)^{j} \frac{(2 \log a)^{j}}{j!}\left(1+O\left(\frac{1}{\log z}\right)\right) \leq \frac{R_{B}^{\prime}}{R_{z}(x)} \leq \frac{(2 \log a)^{B}}{B!} \sum_{j=0}^{2 k}(-1)^{j} \frac{(2 \log a)^{j}}{j!}\left(1+O\left(\frac{1}{\log z}\right)\right) .
$$

Taking $x \rightarrow \infty$, we have

$$
\frac{(2 \log a)^{B}}{B!} \sum_{j=0}^{2 k-1}(-1)^{j} \frac{(2 \log a)^{j}}{j!} \leq \liminf _{x \rightarrow \infty} \frac{R_{B}^{\prime}}{R_{z}(x)} \leq \limsup _{x \rightarrow \infty} \frac{R_{B}^{\prime}}{R_{z}(x)} \leq \frac{(2 \log a)^{B}}{B!} \sum_{j=0}^{2 k}(-1)^{j} \frac{(2 \log a)^{j}}{j!}
$$

Letting $k \rightarrow \infty$, we obtain

$$
\lim _{x \rightarrow \infty} \frac{R_{B}^{\prime}}{R_{z}(x)}=\frac{(2 \log a)^{B}}{B!a^{2}} .
$$

The result for S_{B}^{\prime} can be obtained similarly.
Proof of (11). As in the proof of (10), we assume that $p-1$ is not divisible by square of any prime $q>z$. Note that $\tau_{z}(p-1)=\tau_{z^{a}}(p-1) \tau_{z, z^{a}}(p-1)$. Let $0 \leq B<\infty$ be a fixed integer. If $w_{z, z^{a}}(p-1)=B$ then $\tau_{z, z^{a}}(p-1)=2^{B}$. Then we have by (10),

$$
\sum_{\substack{p \leq x \\ w_{z, z}(p-1)=B}} \tau_{z^{a}}(p-1)=\sum_{\substack{p \leq x \\ w_{z, z}(p-1)=B}} \frac{\tau_{z}(p-1)}{2^{B}}=\frac{R_{B}^{\prime}}{2^{B}}=\frac{(\log a)^{B}}{B!a^{2}} R_{z}(x)(1+o(1)) .
$$

Then by Lemma 2.4,

$$
\begin{aligned}
\frac{R_{z^{a}}(x)}{R_{z}(x)} & =\sum_{j<B} \frac{(\log a)^{j}}{j!a^{2}}(1+o(1))+\frac{1}{R_{z}(x)} \sum_{j \geq B} \frac{1}{2^{j}} \sum_{\substack{p \leq x \\
w_{z, z}(p-1)=j}} \tau_{z}(p-1) \\
& =\sum_{j<B} \frac{(\log a)^{j}}{j!a^{2}}(1+o(1))+O\left(\frac{1}{2^{B} R_{z}(x)} \sum_{\substack{p \leq x \\
w_{z, z^{a}}(p-1) \geq B}} \tau_{z}(p-1)\right) \\
& =\sum_{j<B} \frac{(\log a)^{j}}{j!a^{2}}(1+o(1))+O\left(\frac{R_{B}}{2^{B} R_{z}(x)}\right) \\
& =\sum_{j<B} \frac{(\log a)^{j}}{j!a^{2}}(1+o(1))+O\left(\frac{(2 \log a)^{B}}{2^{B} B!}\left(1+O\left(\frac{1}{\log z}\right)\right)\right) .
\end{aligned}
$$

Thus, both $\liminf _{x \rightarrow \infty} \frac{R_{z} a(x)}{R_{z}(x)}$ and $\limsup _{x \rightarrow \infty} \frac{R_{z} a(x)}{R_{z}(x)}$ are

$$
\sum_{j \leq B} \frac{(\log a)^{j}}{j!a^{2}}+O\left(\frac{(\log a)^{B}}{B!}\right)
$$

and the constant implied in O does not depend on B. Therefore, letting $B \rightarrow \infty$, we obtain

$$
\lim _{x \rightarrow \infty} \frac{R_{z^{a}}(x)}{R_{z}(x)}=\frac{1}{a}
$$

The result for $S_{z^{a}}(x)$ can be obtained similarly.
Lemma 2.5 allows us to have an extended range of z, and the same method applied to $R_{u, z}(x)$, we can also extend range of z for $R_{u, z}(x)$ and $S_{u, z}(x)$.

Corollary 2.1. Fix any $A>1$. Let $\log ^{\frac{1}{A}} x<z \leq \log ^{A} x$. Then as $x \rightarrow \infty$, we have

$$
\begin{equation*}
R_{z}(x)=c_{1} \frac{x}{\log z}(1+o(1)), \quad S_{z}(x)=c_{1} \frac{\log x}{\log z}(1+o(1)) . \tag{12}
\end{equation*}
$$

Assume that u is a positive integer with $p(u)>z, u<(\log x)^{A_{1}}$ and $\tau(u)<A_{1}$. Then as $x \rightarrow \infty$, we have

$$
\begin{equation*}
R_{u, z}(x)=\frac{\tau(u)}{u} R_{z}(x)(1+o(1)), \quad S_{u, z}(x)=\frac{\tau(u)}{u} S_{z}(x)(1+o(1)) . \tag{13}
\end{equation*}
$$

We apply Corollary 2.1 to obtain the following uniform distribution result:
Corollary 2.2. Let $2 \leq v \leq x$ and $r:=\left(v^{\frac{3}{2}} \log v\right)^{-1}$. Suppose also that $r \geq \log ^{-\frac{4}{5}} x, 0 \leq \alpha \leq \beta \leq 1$, and $\beta-\alpha \geq r$. Then for $z \leq \frac{\log x^{r}}{\log _{2}^{2} x^{r}}$,

$$
\begin{equation*}
\sum_{\alpha \leq \frac{\log p}{\log x}<\beta} \frac{\tau_{z}(p-1)}{p}=(\beta-\alpha) S_{z}(x)\left(1+O\left(\frac{1}{\log z}\right)\right) . \tag{14}
\end{equation*}
$$

For $\log ^{\frac{1}{A}} x<z \leq \log ^{A} x$, we have as $x \rightarrow \infty$,

$$
\begin{equation*}
\sum_{\alpha \leq \leq \frac{\log p}{\log x}<\beta} \frac{\tau_{z}(p-1)}{p}=(\beta-\alpha) S_{z}(x)(1+o(1)) . \tag{15}
\end{equation*}
$$

Assume that u is a positive integer with $p(u)>z, u<(\log x)^{A_{1}}$ and $\tau(u)<A_{1}$. Then we have for $z \leq \frac{\log x^{r}}{\log _{2}^{2} x^{r}}$,

$$
\begin{equation*}
\sum_{\substack{\alpha \leq \log p \\ \log x \\ p \equiv 1 \bmod u}} \frac{\tau_{z}(p-1)}{p}=(\beta-\alpha) \frac{\tau(u)}{u} S_{z}(x)\left(1+O\left(\frac{1}{\log z}\right)\right) . \tag{16}
\end{equation*}
$$

and for $\log ^{\frac{1}{A}} x<z \leq \log ^{A} x$, we have as $x \rightarrow \infty$,

$$
\begin{equation*}
\sum_{\substack{\alpha \leq \log p \\ \text { ong } \\ p \equiv 1 \bmod u}} \frac{\tau_{z}(p-1)}{p}=(\beta-\alpha) \frac{\tau(u)}{u} S_{z}(x)(1+o(1)) \tag{17}
\end{equation*}
$$

Proof. By Lemma 2.2(5) and partial summation, we have for $\beta-\alpha \geq r$,

$$
\begin{aligned}
\sum_{\alpha \leq \frac{\log p}{\log x}<\beta} \frac{\tau_{z}(p-1)}{p} & =\left.\frac{R_{z}(t)}{t}\right|_{x^{\alpha}} ^{x^{\beta}}+\int_{x^{\alpha}}^{x^{\beta}} \frac{R_{z}(t)}{t^{2}} d t \\
& =c_{1}(\beta-\alpha) \frac{\log x}{\log z}\left(1+O\left(\frac{1}{\log z}\right)\right)+O\left(\frac{1}{\log ^{2} z}\right) .
\end{aligned}
$$

Clearly, $r \log x \gg 1$. Thus, the second O-term can be included in the first O-term. Then (14) follows.
Since $r \log x \geq \log ^{\frac{1}{5}} x$, the range $\log ^{\frac{1}{A}} x<z \leq \log ^{A} x$ can be obtained from taking powers of $\frac{\log x^{r}}{\log _{2}^{2} x^{r}}$. We have by (12), as $x \rightarrow \infty$,

$$
\begin{aligned}
\sum_{\alpha \leq \frac{\log p}{\log x}<\beta} \frac{\tau_{z}(p-1)}{p} & =\left.\frac{R_{z}(t)}{t}\right|_{x^{\alpha}} ^{x^{\beta}}+\int_{x^{\alpha}}^{x^{\beta}} \frac{R_{z}(t)}{t^{2}} d t \\
& =c_{1}(\beta-\alpha) \frac{\log x}{\log z}(1+o(1))+o\left(\frac{1}{\log z}\right) .
\end{aligned}
$$

Also, by $r \log x \gg 1$, the second o-term can be included in the first o-term. Therefore, (15) follows. Similarly, (16) follows from Lemma 2.3(8) and (17) follows from (13).

We use $p_{1}, p_{2}, \ldots, p_{v}$ to denote prime numbers. We define the following multiple sums for $2 \leq v \leq x$:

$$
\mathfrak{T}_{v, z}(x):=\sum_{p_{1} p_{2} \cdots p_{v} \leq x} \frac{\tau_{z}\left(p_{1}-1\right) \tau_{z}\left(p_{2}-1\right) \cdots \tau_{z}\left(p_{v}-1\right)}{p_{1} p_{2} \cdots p_{v}}
$$

and for $\mathbf{u}=\left(u_{1}, \ldots, u_{v}\right)$ with $1 \leq u_{i} \leq x$,

$$
\mathfrak{T}_{\mathbf{u}, v, z}(x):=\sum_{\substack{p_{1} p_{2} \cdots p_{v} \leq x \\ \forall_{i}, p_{i} \equiv 1 \bmod u_{i}}} \frac{\tau_{z}\left(p_{1}-1\right) \tau_{z}\left(p_{2}-1\right) \cdots \tau_{z}\left(p_{v}-1\right)}{p_{1} p_{2} \cdots p_{v}},
$$

Define $\mathbb{T}_{v}:=\left\{\left(t_{1}, \ldots, t_{v}\right): \forall_{i}, t_{i} \in[0,1], t_{1}+\cdots+t_{v} \leq 1\right\}$. We adopt the idea from Gauss' Circle Problem. Recall that $r=\left(v^{\frac{3}{2}} \log v\right)^{-1}$. Consider a covering of \mathbb{T}_{v} by v-cubes of side-length r of the form:

Let s_{1}, \ldots, s_{v} be nonnegative integers, let

$$
B_{s_{1}, \ldots, s_{v}}:=\left\{\left(t_{1}, \ldots, t_{v}\right): \forall_{i}, r s_{i} \leq t_{i}<r\left(s_{i}+1\right)\right\} .
$$

Let M_{v} be the set of those v-cubes lying completely inside \mathbb{T}_{v}. Then the sum $\mathfrak{T}_{v, z}(x)$ is over the primes satisfying:

$$
\left(\frac{\log p_{1}}{\log x}, \ldots, \frac{\log p_{v}}{\log x}\right) \in \mathbb{T}_{v}
$$

Instead of the whole \mathbb{T}_{v}, we consider the contribution of the sum over primes satisfying:

$$
\left(\frac{\log p_{1}}{\log x}, \ldots, \frac{\log p_{v}}{\log x}\right) \in \cup M_{v}
$$

which come from the v-cubes lying completely inside \mathbb{T}_{v}. We define

$$
\mathfrak{S}_{v, z}(x):=\sum_{\left(\frac{\log p_{1}}{\log x}, \ldots,, \frac{\log p_{v}}{\log x}\right) \in \cup M_{v}} \frac{\tau_{z}\left(p_{1}-1\right) \tau_{z}\left(p_{2}-1\right) \cdots \tau_{z}\left(p_{v}-1\right)}{p_{1} p_{2} \cdots p_{v}}
$$

and similarly for $\mathbf{u}=\left(u_{1}, \cdots, u_{v}\right)$ with $1 \leq u_{i} \leq x$,

$$
\mathfrak{S}_{\mathbf{u}, v, z}(x):=\sum_{\substack{\left(\frac{\log p_{1}, \ldots, \log p_{v}}{\log x}\right) \in \cup M_{v} \\ \forall_{i}, p_{i} \equiv 1 \bmod u_{i}}} \frac{\tau_{z}\left(p_{1}-1\right) \tau_{z}\left(p_{2}-1\right) \cdots \tau_{z}\left(p_{v}-1\right)}{p_{1} p_{2} \cdots p_{v}},
$$

Let $v=\left\lfloor c \sqrt{\frac{\log x}{\log _{2} x}}\right\rfloor$ for some positive constant c to be determined. Then v satisfies the conditions in Corollary 2.2. Then we have:
Lemma 2.6. Let $\log ^{\frac{1}{A}} x<z \leq \log ^{A} x$, then as $x \rightarrow \infty$,

$$
\begin{equation*}
\mathfrak{S}_{v, z}(x)=\frac{1}{v!} S_{z}(x)^{v}(1+o(1))^{v} \tag{18}
\end{equation*}
$$

For $\mathbf{u}=\left(u_{1}, u_{2}, 1, \ldots, 1\right)$ with $1 \leq u_{i} \leq x$,

$$
\begin{equation*}
\mathfrak{S}_{\mathbf{u}, v, z}(x) \ll \frac{\tau\left(u_{1}\right) \tau\left(u_{2}\right)}{\phi\left(u_{1}\right) \phi\left(u_{2}\right)} \mathfrak{S}_{v, z}(x) \log ^{k} z \tag{19}
\end{equation*}
$$

where $0 \leq k \leq 2$ is the number of u_{i} 's that are not 1 .
Assume that each $u_{i}, i=1,2$ is a positive integer with $p\left(u_{i}\right)>z, u_{i}<(\log x)^{A_{1}}$ and $\tau\left(u_{i}\right)<A_{1}$. Then as $x \rightarrow \infty$, we have

$$
\begin{equation*}
\mathfrak{S}_{\mathbf{u}, v, z}(x)=\frac{\tau\left(u_{1}\right) \tau\left(u_{2}\right)}{u_{1} u_{2}} \mathfrak{S}_{v, z}(x)(1+o(1)) \tag{20}
\end{equation*}
$$

Proof of (18). It is clear that

$$
\operatorname{vol}\left((1-r \sqrt{v}) \mathbb{T}_{v}\right) \leq\left|M_{v}\right| \operatorname{vol}\left(B_{0, \ldots, 0}\right) \leq \operatorname{vol}\left(\mathbb{T}_{v}\right)
$$

We have $\operatorname{vol}\left(\mathbb{T}_{v}\right)=\frac{1}{v!}, \operatorname{vol}\left(B_{0, \ldots, 0}\right)=r^{v}$, and $\operatorname{vol}\left((1-r \sqrt{v}) \mathbb{T}_{v}\right)=\frac{1}{v!}(1-r \sqrt{v})^{v}$. Also, recall that $r:=$ $\left(v^{\frac{3}{2}} \log v\right)^{-1}$. Then,

$$
\frac{\frac{1}{v!}\left(1-\frac{1}{v \log v}\right)^{v}}{\left(v^{\frac{3}{2}} \log v\right)^{-v}} \leq\left|M_{v}\right| \leq \frac{\frac{1}{v!}}{\left(v^{\frac{3}{2}} \log v\right)^{-v}} .
$$

On the other hand, by Corollary $2.2(15)$, the contribution of each v-cube $\left[\alpha_{1}, \beta_{1}\right] \times \cdots \times\left[\alpha_{v}, \beta_{v}\right] \subseteq[0,1]^{v}$ of side-length r to the sum is
$\sum_{\forall_{i}, \alpha_{i} \leq \frac{\log p_{i}<\beta_{i}}{\log x}} \frac{\tau_{z}\left(p_{1}-1\right) \tau_{z}\left(p_{2}-1\right) \cdots \tau_{z}\left(p_{v}-1\right)}{p_{1} p_{2} \cdots p_{v}}=\left(\prod_{i=1}^{v}\left(\beta_{i}-\alpha_{i}\right)\right) S_{z}(x)^{v}(1+o(1))^{v}=r^{v} S_{z}(x)^{v}(1+o(1))^{v}$.
Combining this with the bounds for $\left|M_{v}\right|$, we obtain the result.
Proof of (19), (20). Let v and r be as defined in Corollary 2.2. We write (15) and (17) in the form of

$$
\begin{equation*}
\sum_{\alpha \leq \frac{\log p}{\log x}<\beta} \frac{\tau_{z}(p-1)}{p}=(\beta-\alpha) S_{z}(x)\left(1+f_{\alpha, \beta}(x)\right), \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{\substack{\alpha \leq \frac{\log p}{}(\log x \\ p \equiv 1 \bmod u}} \frac{\tau_{z}(p-1)}{p}=(\beta-\alpha) \frac{\tau(u)}{u} S_{z}(x)\left(1+g_{\alpha, \beta}(x)\right) \tag{22}
\end{equation*}
$$

We note that there is a function $f(x)=o(1)$ such that uniformly for $0 \leq \alpha \leq \beta \leq 1$ and $\beta-\alpha \geq r$,

$$
\max \left(\left|f_{\alpha, \beta}(x)\right|,\left|g_{\alpha, \beta}(x)\right|\right) \leq f(x)
$$

Then we can write

$$
\begin{aligned}
\sum_{\substack{\alpha \leq \log p \\
p \equiv 1 \operatorname{mog} x}} \frac{\tau_{z}(p-1)}{p} & =(\beta-\alpha) \frac{\tau(u)}{u} S_{z}(x)\left(1+g_{\alpha, \beta}(x)\right) \\
& =\frac{\tau(u)}{u} \sum_{\alpha \leq \frac{\log p}{\log x}<\beta} \frac{\tau_{z}(p-1)}{p}\left(\frac{1+g_{\alpha, \beta}(x)}{1+f_{\alpha, \beta}(x)}\right) \\
& =\frac{\tau(u)}{u} \sum_{\alpha \leq \frac{\log p}{\log x}<\beta} \frac{\tau_{z}(p-1)}{p}(1+O(f(x))) .
\end{aligned}
$$

Consider any v-cube $\left[\alpha_{1}, \beta_{1}\right] \times \cdots \times\left[\alpha_{v}, \beta_{v}\right] \subseteq[0,1]^{v}$ of side-length r. Then by the above observation,

$$
\begin{aligned}
\sum_{\substack{\forall_{i}, \alpha_{i} \leq \log p_{i} \\
p_{i} \equiv 1 \operatorname{mog} x \\
u_{i} \text { for } i=1,2}} & \frac{\tau_{z}\left(p_{1}-1\right) \tau_{z}\left(p_{2}-1\right) \cdots \tau_{z}\left(p_{v}-1\right)}{p_{1} p_{2} \cdots p_{v}} \\
& =\frac{\tau\left(u_{1}\right) \tau\left(u_{2}\right)}{u_{1} u_{2}} \sum_{\forall_{i}, \alpha_{i} \leq \frac{\log p_{i}}{\log x}<\beta_{i}} \frac{\tau_{z}\left(p_{1}-1\right) \tau_{z}\left(p_{2}-1\right) \cdots \tau_{z}\left(p_{v}-1\right)}{p_{1} p_{2} \cdots p_{v}}(1+O(f(x)))^{2} .
\end{aligned}
$$

This proves (20). For the proof of (19), we use instead

$$
\begin{aligned}
\sum_{\substack{\alpha \leq \log p \\
p \equiv 1 \bmod x}} \frac{\tau_{z}(p-1)}{p} & =\left.\frac{R_{u, z}(t)}{t}\right|_{x^{\alpha}} ^{x^{\beta}}+\int_{x^{\alpha}}^{x^{\beta}} \frac{R_{u, z}(t)}{t^{2}} d t \\
& \ll \frac{\tau(u)}{\phi(u)}((\beta-\alpha) \log x+O(1)) \ll \frac{\tau(u)}{\phi(u)}(\beta-\alpha) \log x \\
& \ll \frac{\tau(u)}{\phi(u)}(\beta-\alpha) S_{z}(x) \log z \ll \frac{\tau(u)}{\phi(u)} \sum_{\alpha \leq \frac{\log p}{\log x}<\beta} \frac{\tau_{z}(p-1)}{p} \log z,
\end{aligned}
$$

which follows from Lemma 2.3(7).

We impose some restrictions on the primes p_{1}, \ldots, p_{v} :
R1. p_{1}, \ldots, p_{v} are distinct.
R2. For each $i, q^{2} \nmid p_{i}-1$ for any prime $q>z$.
R3. $q^{2} \nmid \phi\left(p_{1} \cdots p_{v}\right)$ for any prime $q>z^{2}$.
Recall that we chose

$$
v=\left\lfloor c \sqrt{\frac{\log x}{\log _{2} x}}\right\rfloor
$$

for some positive constant c to be determined. Let $\mathfrak{S}_{v, z}{ }^{(1)}(x)$ be the contribution of primes to $\mathfrak{S}_{v, z}(x)$ not satisfying R1. Note that if R1 is not satisfied, then some primes among p_{1}, \ldots, p_{v} are repeated. Then by

Lemma 2.6(18),

$$
\begin{aligned}
\mathfrak{S}_{v, z}^{(1)}(x) & \ll\binom{v}{2}\left(\sum_{z<p \leq x} \frac{\tau_{z}(p-1)^{2}}{p^{2}}\right) \mathfrak{S}_{v-2, z}(x) \\
& \ll v^{2} \frac{\log ^{3} z}{z} \frac{v(v-1)}{S_{z}(x)^{2}} \mathfrak{S}_{v, z}(x) \\
& \ll \frac{v^{4} \log ^{5} z}{z \log ^{2} x} \mathfrak{S}_{v, z}(x) \ll \frac{\log ^{3} z}{z} \mathfrak{S}_{v, z}(x) .
\end{aligned}
$$

Let $\mathfrak{S}_{v, z}{ }^{(2)}(x)$ be the contribution of primes to $\mathfrak{S}_{v, z}(x)$ not satisfying R2. Note that if R2 is not satisfied, then $q^{2} \mid p_{i}-1$ for some primes p_{i} and $q>z$. Let $\mathbf{u}_{q^{2}}:=\left(q^{2}, 1, \ldots, 1\right)$. Suppose that $q^{2} \mid p_{i}-1$ for some p_{i} and $q>z^{2}$. Then the contribution of those primes to $\mathfrak{S}_{v, z}{ }^{(2)}(x)$ is by (19),

$$
\ll \sum_{q>z^{2}}\binom{v}{1} \mathfrak{S}_{\mathbf{u}_{q^{2}}, v, z}(x) \ll \sum_{q>z^{2}} \frac{v}{\phi\left(q^{2}\right)} \mathfrak{S}_{v, z}(x) \log z \ll \sum_{q>z^{2}} \frac{v}{q^{2}} \mathfrak{S}_{v, z}(x) \log z \ll \frac{v}{z^{2}} \mathfrak{S}_{v, z}(x) .
$$

Suppose that $q^{2} \mid p_{i}-1$ for some p_{i} and $z<q \leq z^{2}$, then we have by (20),

$$
\ll \sum_{z<q \leq z^{2}}\binom{v}{1} \mathfrak{S}_{\mathbf{u}_{q^{2}}, v, z}(x) \ll \sum_{z<q \leq z^{2}} \frac{v}{q^{2}} \mathfrak{S}_{v, z}(x) \ll \frac{v}{z \log z} \mathfrak{S}_{v, z}(x) .
$$

Thus, we have

$$
\mathfrak{S}_{v, z}^{(2)}(x) \ll \frac{v}{z \log z} \mathfrak{S}_{v, z}(x)
$$

Let $\mathfrak{S}_{v, z}{ }^{(3)}(x)$ be the contribution of primes to $\mathfrak{S}_{v, z}(x)$ satisfying R1 and R2, but not satisfying R3. Note that if R1, R2 are satisfied and R3 is not satisfied, then there are at least two distinct primes p_{i}, p_{j} such that $q \mid p_{i}-1$ and $q \mid p_{j}-1$. Let $\mathbf{u}_{q, q}:=(q, q, 1, \ldots, 1)$. Suppose first that this happens with $q>z^{4}$. Then by (19), the contribution is

$$
\ll \sum_{q>z^{4}}\binom{v}{2} \mathfrak{S}_{\mathbf{u}_{q, q}, v, z}(x) \ll \sum_{q>z^{4}} \frac{v^{2}}{\phi(q)^{2}} \mathfrak{S}_{v, z}(x) \log ^{2} z \ll \frac{v^{2} \log z}{z^{4}} \mathfrak{S}_{v, z}(x) .
$$

Suppose that this happens with $z^{2}<q \leq z^{4}$. Then by (20), the contribution is

$$
\ll \sum_{z^{2}<q \leq z^{4}}\binom{v}{2} \mathfrak{S}_{\mathbf{u}_{q, q}, v, z}(x) \ll \sum_{z^{2}<q \leq z^{4}} \frac{v^{2}}{q^{2}} \mathfrak{S}_{v, z}(x) \ll \frac{v^{2}}{z^{2} \log z} \mathfrak{S}_{v, z}(x) .
$$

Thus, we have

$$
\mathfrak{S}_{v, z}{ }^{(3)}(x) \ll \frac{v^{2}}{z^{2} \log z} \mathfrak{S}_{v, z}(x) .
$$

We write $\mathfrak{S}_{v, z}{ }^{(0)}(x)$ to denote the contribution of those primes to $\mathfrak{S}_{v, z}(x)$ satisfying all three restrictions R1, R2, and R3. By the above estimates, we have

$$
\begin{aligned}
\mathfrak{S}_{v, z}{ }^{(0)}(x) & \geq \mathfrak{S}_{v, z}(x)-\mathfrak{S}_{v, z}{ }^{(1)}(x)-\mathfrak{S}_{v, z}{ }^{(2)}(x)-\mathfrak{S}_{v, z}{ }^{(3)}(x) \\
& =\mathfrak{S}_{v, z}(x)\left(1+O\left(\frac{\log ^{3} z}{z}\right)+O\left(\frac{v}{z \log z}\right)+O\left(\frac{v^{2}}{z^{2} \log z}\right)\right) .
\end{aligned}
$$

Therefore,

$$
\begin{equation*}
\mathfrak{S}_{v, z^{(0)}}(x)=\mathfrak{S}_{v, z}(x)\left(1+O\left(\frac{\log ^{3} z}{z}\right)+O\left(\frac{v}{z \log z}\right)+O\left(\frac{v^{2}}{z^{2} \log z}\right)\right) \tag{23}
\end{equation*}
$$

3. Proof of Theorem 1.1

We set

$$
\begin{gathered}
v=v(x):=\left\lfloor c \sqrt{\frac{\log x}{\log _{2} x}}\right\rfloor, z=z(x):=\sqrt{\log x}, \\
y:=\exp (\sqrt{\log x})
\end{gathered}
$$

with a positive constant c to be determined.
Consider a subset $Q_{z}(x)$ of primes defined by:

$$
Q=Q_{z}(x):=\left\{p: p \leq x, q^{2} \nmid p-1 \text { for any prime } q>z\right\} .
$$

We define \mathcal{N}, \mathcal{M} by:

$$
\begin{gathered}
\mathcal{N}=\mathcal{N}_{v}(x):=\{n \leq x: n \text { is square-free, } p \mid n \Rightarrow p \in Q, w(n)=v\}, \\
\mathcal{M}=\mathcal{M}_{v}(x):=\left\{n \leq x: n \in \mathcal{N}, q^{2} \nmid \phi(n) \text { for any prime } q>z^{2}\right\} .
\end{gathered}
$$

We write

$$
V_{\mathcal{M}}(x):=\sum_{n \in \mathcal{M}} \frac{\tau_{z}(\lambda(n))}{n}, \quad \tau_{z}^{\prime \prime}(n):=\prod_{p \mid n} \tau_{z}(p-1)
$$

We also write

$$
W_{\mathcal{M}}:=\sum_{n \in \mathcal{M}} \frac{\tau_{z}^{\prime \prime}(n)}{n}, W_{\mathcal{M}}^{\prime}:=\sum_{n \in \mathcal{M}} \frac{\tau_{z^{2}}^{\prime \prime}(n)}{n}
$$

By (23), the contribution of those primes satisfying R1, R2, and R3 to $\mathfrak{S}_{v, z}(x)$, which we wrote as $\mathfrak{S}_{v, z^{(0)}}(x)$ satisfies

$$
\begin{aligned}
\mathfrak{S}_{v, z^{(0)}(x)} & =\mathfrak{S}_{v, z}(x)\left(1+O\left(\frac{\log ^{3} z}{z}\right)+O\left(\frac{v}{z \log z}\right)+O\left(\frac{v^{2}}{z^{2} \log z}\right)\right) . \\
& =\mathfrak{S}_{v, z}(x)\left(1+O\left(\frac{1}{\log _{2} x}\right)\right)
\end{aligned}
$$

Then by Lemma 2.6(18) and Stirling's formula,

$$
W_{\mathcal{M}} \geq \frac{1}{v!} \mathfrak{S}_{v, z}{ }^{(0)}(x) \asymp \frac{1}{v}\left(\frac{e}{v}\right)^{2 v}\left(c_{1} \frac{\log x}{\log z}\right)^{v}(1+o(1))^{v}
$$

Thus,

$$
W_{\mathcal{M}} \gg \exp \left(\sqrt{\frac{\log x}{\log _{2} x}}\left(2 c+c \log c_{1}-2 c \log c+c \log 2+o(1)\right)\right) .
$$

Maximizing $2 c+c \log c_{1}-2 c \log c+c \log 2$ by the first derivative, we have $c=\sqrt{2} e^{-\gamma / 2}$, hence

$$
W_{\mathcal{M}} \gg \exp \left(2 \sqrt{2} e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log _{2} x}}(1+o(1))\right) .
$$

For $W_{\mathcal{M}}^{\prime}$, we have by (23), the contribution of those primes satisfying R1, R2, and R3 to $\mathfrak{S}_{v, z^{2}}(x)$, say $\mathfrak{S}_{v, z^{2}}{ }^{\left(0^{\prime}\right)}(x)$ satisfies

$$
\begin{aligned}
\mathfrak{S}_{v, z^{2}}{ }^{\left(0^{\prime}\right)}(x) & =\mathfrak{S}_{v, z^{2}}(x)\left(1+O\left(\frac{\log ^{3} z}{z^{2}}\right)+O\left(\frac{v}{z \log z}\right)+O\left(\frac{v^{2}}{z^{2} \log z}\right)\right) . \\
& =\mathfrak{S}_{v, z^{2}}(x)\left(1+O\left(\frac{1}{\log _{2} x}\right)\right) .
\end{aligned}
$$

Then by Lemma 2.6(18) and Stirling's formula, as $x \rightarrow \infty$,

$$
W_{\mathcal{M}}^{\prime} \geq \frac{1}{v!} \mathfrak{S}_{v, z^{2}}{ }^{\left(0^{\prime}\right)}(x) \asymp \frac{1}{v}\left(\frac{e}{v}\right)^{2 v}\left(c_{1} \frac{\log x}{\log z^{2}}\right)^{v}(1+o(1))^{v}
$$

Thus,

$$
W_{\mathcal{M}}^{\prime} \gg \exp \left(\sqrt{\frac{\log x}{\log _{2} x}}\left(2 c+c \log c_{1}-2 c \log c+o(1)\right)\right) .
$$

Maximizing $2 c+c \log c_{1}-2 c \log c$ by the first derivative, we have $c=e^{-\gamma / 2}$, hence as $x \rightarrow \infty$,

$$
W_{\mathcal{M}}^{\prime} \gg \exp \left(2 e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log _{2} x}}(1+o(1))\right) .
$$

Therefore, we have just proved the lower bounds of the following:
Theorem 3.1. For $z=\sqrt{\log x}$, as $x \rightarrow \infty$,

$$
\begin{equation*}
\sum_{n \leq x} \mu^{2}(n) \frac{\tau_{z}^{\prime \prime}(n)}{n}=\exp \left(2 \sqrt{2} e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log _{2} x}}(1+o(1))\right) \tag{24}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n \leq x} \mu^{2}(n) \frac{\tau_{z^{2}}^{\prime \prime}(n)}{n}=\exp \left(2 e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log _{2} x}}(1+o(1))\right) . \tag{25}
\end{equation*}
$$

Note that the upper bounds follow from Rankin's method as in [LP, Theorem 1].
We proceed the similar argument as in [LP]. Let $\mathcal{M}=\mathcal{M}_{v}(x)$ be as above with the choice $c=e^{-\gamma / 2}$. Now, for $n \in \mathcal{M}$, we have

$$
\begin{aligned}
& \tau_{z}(\phi(n))=\tau_{z, z^{2}}(\phi(n)) \tau_{z^{2}}(\phi(n)) \geq \tau_{z^{2}}(\phi(n))=\tau_{z^{2}}^{\prime \prime}(n), \\
& \tau_{z}(\lambda(n))=\tau_{z, z^{2}}(\lambda(n)) \tau_{z^{2}}(\lambda(n)) \geq \tau_{z^{2}}(\lambda(n))=\tau_{z^{2}}^{\prime \prime}(n) .
\end{aligned}
$$

Then as $x \rightarrow \infty$,

$$
V_{\mathcal{M}}(x) \geq W_{\mathcal{M}}^{\prime} \gg \exp \left(2 e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log _{2} x}}(1+o(1))\right)
$$

The argument proceeds as in [LP]. Let \mathcal{M}^{\prime} be defined by

$$
\mathcal{M}^{\prime}:=\left\{n p: n \in \mathcal{M}_{v}\left(x y^{-1}\right), \quad p \text { is a prime, } p \leq \frac{x}{n}\right\} .
$$

For those $n^{\prime}=n p \in \mathcal{M}^{\prime}$, we have

$$
\tau(\lambda(n p)) \geq \tau(\lambda(n)) \geq \tau_{z}(\lambda(n))
$$

and a given $n^{\prime} \in \mathcal{M}^{\prime}$ has at most $v+1$ decompositions of the form $n^{\prime}=n p$ with $n \in \mathcal{M}_{v}\left(x y^{-1}\right), p \leq \frac{x}{n}$.
Since $n \leq x y^{-1}$ for $n \in \mathcal{M}_{v}\left(x y^{-1}\right)$, the number of p in $p \leq \frac{x}{n}$ is

$$
\pi\left(\frac{x}{n}\right) \gg \frac{x}{n \log x} .
$$

Note that $\log y=\sqrt{\log x}=o(\log x)$. This gives

$$
V_{\mathcal{M}}\left(x y^{-1}\right) \gg \exp \left(2 e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log _{2} x}}(1+o(1))\right) .
$$

Then

$$
\sum_{n \leq x} \tau(\lambda(n)) \geq \sum_{n \in \mathcal{M}^{\prime}} \tau(\lambda(n)) \gg V_{\mathcal{M}}\left(x y^{-1}\right) \frac{x}{v \log x} \gg x \exp \left(2 e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log _{2} x}}(1+o(1))\right) .
$$

This completes the proof of Theorem 1.1.

Remarks.

1. In the proof of Theorem 1.1, we dropped $\tau_{z, z^{2}}(\phi(n))$. This is where a prime $z<q \leq z^{2}$ can divide multiple $p_{i}-1$ for $i=1,2, \cdots, v$, and that is the main difficulty in obtaining more precise formulas for $\sum_{n \leq x} \tau(\phi(n))$ and $\sum_{n \leq x} \tau(\lambda(n))$.
2. We will see a heuristic argument suggesting that as $x \rightarrow \infty$,

$$
\sum_{n \leq x} \tau(\lambda(n))=x \exp \left(2 \sqrt{2} e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log _{2} x}}(1+o(1))\right)
$$

and hence,

$$
\sum_{n \leq x} \tau(\phi(n))=x \exp \left(2 \sqrt{2} e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log _{2} x}}(1+o(1))\right) .
$$

However, we have

$$
\sum_{n \leq x} \tau(\lambda(n))=o\left(\sum_{n \leq x} \tau(\phi(n))\right)
$$

We will prove this in the following section. The prime 2 plays a crucial role in the proof of Theorem 1.2.

4. Proof of Theorem 1.2

We put k and w as in [LP]:

$$
k=\left\lfloor A \log _{2} x\right\rfloor, \quad \omega=\left\lfloor\frac{\sqrt{\log x}}{\log _{2}^{2} x}\right\rfloor .
$$

Here, A is a positive constant to be determined. Also, define $\mathcal{E}_{1}(x), \mathcal{E}_{2}(x)$ and $\mathcal{E}_{3}(x)$ in the same way:

$$
\begin{gathered}
\mathcal{E}_{1}(x):=\left\{n \leq x: 2^{k} \mid n \text { or there is a prime } p \mid n \text { with } p \equiv 1 \bmod 2^{k}\right\}, \\
\mathcal{E}_{2}(x):=\{n \leq x: \omega(n) \leq \omega\},
\end{gathered}
$$

and

$$
\mathcal{E}_{3}(x):=\{n \leq x\}-\left(\mathcal{E}_{1}(x) \cup \mathcal{E}_{2}(x)\right) .
$$

We need the following lemma.
Lemma 4.1. For any $2 \leq y \leq x$, we have

$$
\sum_{n \leq \frac{x}{y}} \frac{\tau(\phi(n))}{n} \ll \frac{\log ^{5} x}{x} \sum_{n \leq x} \tau(\phi(n)) .
$$

Proof. As in the proof of [LP, Theorem 1], we use the square-free kernel $k=k(n)$ (if a prime p divides n, then $p \mid k$, and k is a square-free positive integer which divides n) and the factorization $n=m k$ to rewrite the sum as

$$
\begin{aligned}
\sum_{n \leq \frac{x}{y}} \frac{\tau(\phi(n))}{n} & \leq \sum_{k \leq \frac{x}{y}} \mu^{2}(k) \sum_{m \leq \frac{x}{k y}} \frac{\tau(m) \tau(\phi(k))}{m k} \\
& \ll \sum_{k \leq \frac{x}{y}} \mu^{2}(k) \frac{\tau(\phi(k))}{k} \log ^{2} x .
\end{aligned}
$$

Note that we have uniformly $w(n) \ll \log x$. Find v such that

$$
\sum_{\substack{k \leq \frac{x}{y} \\ \omega(k)=v}} \mu^{2}(k) \frac{\tau(\phi(k))}{k}
$$

is maximal. Then we have

$$
\sum_{k \leq \frac{x}{y}} \mu^{2}(k) \frac{\tau(\phi(k))}{k} \ll \log x \sum_{\substack{k \leq \frac{x}{y} \\ \omega(k)=v}} \mu^{2}(k) \frac{\tau(\phi(k))}{k} .
$$

We adopt an idea from the proof of Theorem 1.1. Let $\mathcal{M}=\mathcal{M}_{v}\left(x y^{-1}\right)$ be the set of square-free numbers $k \leq x y^{-1}$ with $\omega(k)=v$. Define

$$
\mathcal{M}^{\prime}:=\left\{k p: k \in \mathcal{M}_{v}\left(x y^{-1}\right), \quad p \text { is a prime, } \quad p \leq \frac{x}{k}\right\} .
$$

For those $n^{\prime}=k p \in \mathcal{M}^{\prime}$ with $k \in \mathcal{M}$, we have

$$
\tau(\phi(k p)) \geq \tau(\phi(k))
$$

and any given $n^{\prime} \in \mathcal{M}^{\prime}$ has at most $v+1$ decompositions of the form $n^{\prime}=k p$ with $k \in \mathcal{M}, p \leq \frac{x}{k}$.
Since the number of p satisfying $p \leq \frac{x}{k}$ is

$$
\pi\left(\frac{x}{k}\right) \gg \frac{x}{k \log x},
$$

it follows that

$$
\sum_{n \leq x} \tau(\phi(n)) \geq \sum_{n \in \mathcal{M}^{\prime}} \tau(\phi(n)) \gg \sum_{\substack{k \leq \frac{x}{y} \\ \omega(k)=v}} \mu^{2}(k) \frac{\tau(\phi(k))}{k} \frac{x}{v \log x} .
$$

Since $v \ll \log x$, we have

$$
\sum_{\substack{k \leq x \\ w(k)=v}} \mu^{2}(k) \frac{\tau(\phi(k))}{k} \ll \frac{\log ^{2} x}{x} \sum_{n \leq x} \tau(\phi(n)) .
$$

This gives

$$
\sum_{k \leq \frac{x}{y}} \mu^{2}(k) \frac{\tau(\phi(k))}{k} \ll \frac{\log ^{3} x}{x} \sum_{n \leq x} \tau(\phi(n)) .
$$

Then the result follows.
For $n \in \mathcal{E}_{1}(x)$, we have by Lemma 2.3 and Lemma 4.1,

$$
\begin{aligned}
\sum_{n \in \mathcal{E}_{1}(x)} \tau(\lambda(n)) & \leq x \sum_{n \in \mathcal{E}_{1}(x)} \frac{\tau(\phi(n))}{n} \\
& \leq x \frac{\tau\left(2^{k}\right)}{2^{k}} \sum_{m \leq \frac{x}{2^{k}}} \frac{\tau(\phi(m))}{m}+x \sum_{\substack{p \leq x \\
p \equiv 1 \bmod 2^{k}}} \frac{\tau(p-1)}{p} \sum_{m \leq \frac{x}{p}} \frac{\tau(\phi(m))}{m} \\
& \ll \log ^{5} x\left(\frac{\tau\left(2^{k}\right)}{\phi\left(2^{k}\right)} \log x \sum_{n \leq x} \tau(\phi(n))\right) \\
& \ll \log ^{6} x \frac{A \log _{2} x}{\log ^{A \log 2} x} \sum_{n \leq x} \tau(\phi(n))
\end{aligned}
$$

If we take $A \log 2>7$, then we obtain that

$$
\sum_{n \in \mathcal{E}_{1}(x)} \tau(\lambda(n))=o\left(\sum_{n \leq x} \tau(\phi(n))\right)
$$

For $n \in \mathcal{E}_{2}(x)$, we use the square-free kernel $k=k(n)$ and the factorization $n=m k$ as before,

$$
\begin{aligned}
\sum_{n \in \mathcal{E}_{2}(x)} \tau(\lambda(n)) & \leq \sum_{n \in \mathcal{E}_{2}(x)} \tau(\phi(n)) \\
& \ll \sum_{\substack{k \leq x \\
\omega(k) \leq \omega}} \mu^{2}(k) \sum_{m \leq \frac{x}{k}} \tau(m) \tau(\phi(k)) \\
& \ll \sum_{\substack{k \leq x \\
\omega(k) \leq \omega}} \mu^{2}(k) \frac{x}{k}(\log x) \tau(\phi(k)) \\
& \ll x \omega \log x\left(\sum_{p \leq x} \frac{\tau(p-1)}{p}\right)^{\omega} \\
& \ll x(\log x)^{\frac{3}{2}}(C \log x)^{\omega} \ll x \exp \left(2 \frac{\sqrt{\log x}}{\log _{2} x}\right) .
\end{aligned}
$$

Thus, by Theorem 1.1,

$$
\sum_{n \in \mathcal{E}_{2}(x)} \tau(\lambda(n))=o\left(\sum_{n \leq x} \tau(\phi(n))\right) .
$$

For $n \in \mathcal{E}_{3}(x)$, we follow the method of $[\mathrm{LP}]$. We have

$$
\frac{\tau(\phi(n))}{\tau(\lambda(n))} \geq \frac{\omega}{k} \gg \frac{\sqrt{\log x}}{\log _{2}^{3} x} .
$$

Then

$$
\sum_{n \in \mathcal{E}_{3}(x)} \tau(\lambda(n)) \ll \frac{\log _{2}^{3} x}{\sqrt{\log x}} \sum_{n \in \mathcal{E}_{3}(x)} \tau(\phi(n)) \leq \frac{\log _{2}^{3} x}{\sqrt{\log x}} \sum_{n \leq x} \tau(\phi(n)) .
$$

Therefore, putting these together, we have

$$
\sum_{n \leq x} \tau(\lambda(n)) \ll \frac{\log _{2}^{3} x}{\sqrt{\log x}} \sum_{n \leq x} \tau(\phi(n)),
$$

and Theorem 1.2 follows.

5. Heuristics

Recall that $\tau_{z}(\lambda(n))=\tau_{z, z^{2}}(\lambda(n)) \tau_{z^{2}}(\lambda(n))$. Let \mathcal{M} be the set defined in Section 3 with the choice of $v=\left\lfloor\sqrt{2} e^{-\gamma / 2} \sqrt{\frac{\log x}{\log _{2} x}}\right\rfloor$. As in Section 3, we have $\tau_{z^{2}}(\lambda(n))=\tau_{z^{2}}^{\prime \prime}(n)$ for $n \in \mathcal{M}$. It is important to note that $q^{2} \nmid p_{i}-1$ for any primes $p_{i} \mid n$ and $q>z$. Also, we have $q^{2} \nmid \phi(n)$ for $q>z^{2}$. Thus, it is enough to focus on the sum $V_{\mathcal{M}}(x)$. If we could prove that $V_{\mathcal{M}}(x)=\sum_{n \in \mathcal{M}} \frac{\tau_{z}(\lambda(n))}{n} \gg \exp \left(2 \sqrt{2} e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log _{2} x}}(1+o(1))\right)$, then the same argument as in Theorem 1.1 would allow $\sum_{n \leq x} \tau(\lambda(n)) \gg x \exp \left(2 \sqrt{2} e^{-\frac{\gamma}{2}} \sqrt{\frac{\log x}{\log _{2} x}}(1+o(1))\right)$. We need the contribution of $\tau_{z, z^{2}}(\lambda(n))$ over $n \in \mathcal{M}$. Let $\mathfrak{S}_{v, z}(x)$ be the sum defined in Section 2, and define

$$
\mathfrak{U}_{v, z}(x):=\sum_{\left(\frac{\log p_{1}}{\log x}, \ldots, \frac{\log p_{v}}{\log x}\right) \in \cup M_{v}} \frac{\tau_{z, z^{2}}\left(\operatorname{lcm}\left(p_{1}-1, p_{2}-1, \ldots, p_{v}-1\right)\right)}{\tau_{z, z^{2}}\left(p_{1}-1\right) \tau_{z, z^{2}}\left(p_{2}-1\right) \cdots \tau_{z, z^{2}}\left(p_{v}-1\right)} \frac{\tau_{z}\left(p_{1}-1\right) \tau_{z}\left(p_{2}-1\right) \cdots \tau_{z}\left(p_{v}-1\right)}{p_{1} p_{2} \cdots p_{v}} .
$$

We have also defined in Section 2 that for $\mathbf{u}=\left(u_{1}, \ldots, u_{v}\right)$ with $1 \leq u_{i} \leq x$,

We need to extend Lemma 2.6 to cover all components of \mathbf{u}.
Lemma 5.1. Let $\log ^{\frac{1}{A}} x<z \leq \log ^{A} x$, then for $\mathbf{u}=\left(u_{1}, u_{2}, \ldots, u_{v}\right)$ with $1 \leq u_{i} \leq x$,

$$
\begin{equation*}
\mathfrak{S}_{\mathbf{u}, v, z}(x) \ll \frac{\tau\left(u_{1}\right) \tau\left(u_{2}\right) \cdots \tau\left(u_{v}\right)}{\phi\left(u_{1}\right) \phi\left(u_{2}\right) \cdots \phi\left(u_{v}\right)} \mathfrak{S}_{v, z}(x)(1+o(1))^{k} \log ^{k} z \tag{26}
\end{equation*}
$$

where $0 \leq k \leq v$ is the number of u_{i} 's that are not 1 .
Assume that each $u_{i}, 1 \leq i \leq v$ is either 1 or a positive integer with $p\left(u_{i}\right)>z, u_{i}<(\log x)^{A_{1}}$ and $\tau\left(u_{i}\right)<A_{1}$. Then

$$
\begin{equation*}
\mathfrak{S}_{\mathbf{u}, v, z}(x)=\frac{\tau\left(u_{1}\right) \tau\left(u_{2}\right) \cdots \tau\left(u_{v}\right)}{u_{1} u_{2} \cdots u_{v}} \mathfrak{S}_{v, z}(x)(1+o(1))^{k} \tag{27}
\end{equation*}
$$

where $0 \leq k \leq v$ is the number of u_{i} 's that are not 1 .
The same proof as in Lemma 2.6 applies with the need of considering all components of \mathbf{u}.
Fix a prime $z<q \leq z^{2}$. Consider the number X_{q} of primes p_{1}, \ldots, p_{v} such that q divides $p_{i}-1$. By Lemma 5.1, it is natural to model X_{q} by a binomial distribution with parameters v and $\frac{2}{q}$. In fact, Lemma 5.1 implies that

Lemma 5.2. For any $0 \leq k \leq v$, as $x \rightarrow \infty$,

$$
\begin{aligned}
P\left(X_{q}=k\right):= & \frac{1}{\mathfrak{S}_{v, z}(x)} \sum_{\substack{\left(\frac{\log p_{1}, \ldots, \log p_{v}}{\log x}\right) \in \cup M_{v} \\
\log x}} \frac{\tau_{z}\left(p_{1}-1\right) \tau_{z}\left(p_{2}-1\right) \cdots \tau_{z}\left(p_{v}-1\right)}{p_{1} p_{2} \cdots p_{v}} \\
& =\binom{v}{k}\left(\frac{2}{q}\right)^{k}\left(1-\frac{2}{q}\right)^{v-k}(1+o(1))^{v} .
\end{aligned}
$$

Here, the functions implied in $1+o(1)$ only depend on x and do not depend on k.
Denote by A_{q} the contribution of a power of q in

$$
\frac{\tau_{z, z^{2}}\left(\operatorname{lcm}\left(p_{1}-1, p_{2}-1, \ldots, p_{v}-1\right)\right)}{\tau_{z, z^{2}}\left(p_{1}-1\right) \tau_{z, z^{2}}\left(p_{2}-1\right) \cdots \tau_{z, z^{2}}\left(p_{v}-1\right)}
$$

Similarly, denote by $A_{q_{1}, \cdots, q_{j}}$ the contribution of powers of q_{1}, \cdots, q_{j} in the above. Let

$$
B_{z, v}:=\frac{\tau_{z}\left(p_{1}-1\right) \tau_{z}\left(p_{2}-1\right) \cdots \tau_{z}\left(p_{v}-1\right)}{p_{1} p_{2} \cdots p_{v}} .
$$

We can combine the contributions of finite number of primes q_{1}, \ldots, q_{j} in $\left(z, z^{2}\right]$. For these multiple primes, Lemma 5.2 becomes

Lemma 5.3. For any $0 \leq k_{1}, \ldots, k_{j} \leq v$, as $x \rightarrow \infty$,

$$
\begin{aligned}
P\left(X_{q_{1}}=k_{1}, \ldots, X_{q_{j}}=k_{j}\right): & =\frac{1}{\mathfrak{S}_{v, z}(x)} \sum_{\substack{\left(\frac{\left.\log p_{1}, \ldots, \log p_{v}\right) \in \cup M_{v}}{\log x} \ldots \\
\log \text { each } x \\
\log =1, \ldots, j, \\
\text { exactly } k_{s} \text { primes } p_{i} \text { satisfy } q_{s} \mid p_{i}-1\right.}} \frac{\tau_{z}\left(p_{1}-1\right) \tau_{z}\left(p_{2}-1\right) \cdots \tau_{z}\left(p_{v}-1\right)}{p_{1} p_{2} \cdots p_{v}} \\
& =\prod_{s \leq j}\binom{v}{k_{s}}\left(\frac{2}{q_{s}}\right)^{k_{s}}\left(1-\frac{2}{q_{s}}\right)^{v-k_{s}}(1+o(1))^{v} .
\end{aligned}
$$

Here, the functions implied in $1+o(1)$ only depend on j, x and they do not depend on k_{s}.
This shows that the random variables $X_{q_{i}}$ behave similar as independent binomial distributions. For $z<q \leq z^{2}$, we have $A_{q}=\frac{2}{2^{k}}$ for $k \geq 1$, and $A_{q}=1$ for $k=0$. Thus, the contribution of this prime q is

$$
\mathbf{E}\left[A_{q}\right]=\left(2\left(1-\frac{1}{q}\right)^{v}-\left(1-\frac{2}{q}\right)^{v}\right)(1+o(1))^{v} .
$$

For distinct primes q_{1}, \ldots, q_{j} in $\left(z, z^{2}\right]$, the contribution of these primes is

$$
\mathbf{E}\left[A_{q_{1}, \ldots, q_{j}}\right]=\prod_{s \leq j}\left(2\left(1-\frac{1}{q_{s}}\right)^{v}-\left(1-\frac{2}{q_{s}}\right)^{v}\right)(1+o(1))^{v},
$$

where the function implied in $1+o(1)$ only depends on j, x.
Then, we conjecture that the contribution of all primes in $z<q \leq z^{2}$ will be
Conjecture 5.1. As $x \rightarrow \infty$, we have

$$
\mathfrak{U}_{v, z}(x)=\prod_{z<q \leq z^{2}}\left(2\left(1-\frac{1}{q}\right)^{v}-\left(1-\frac{2}{q}\right)^{v}\right) \mathfrak{S}_{v, z}(x)(1+o(1))^{v} .
$$

It is clear that

$$
2\left(1-\frac{1}{q}\right)^{v}-\left(1-\frac{2}{q}\right)^{v}=1+o\left(\frac{v}{q}\right) .
$$

Thus, we have as $x \rightarrow \infty$,

$$
\prod_{z<q \leq z^{2}}\left(2\left(1-\frac{1}{q}\right)^{v}-\left(1-\frac{2}{q}\right)^{v}\right)=(1+o(1))^{v}
$$

Therefore, we obtain the following heuristic result according to Conjecture 5.1.
Conjecture 5.2. As $x \rightarrow \infty$, we have

$$
\mathfrak{U}_{v, z}(x)=\mathfrak{S}_{v, z}(x)(1+o(1))^{v} .
$$

Then Conjecture 1.1 follows from Lemma 2.6.

Remarks.

We were unable to prove Conjecture 1.1. The main difficulty is due to the short range of u in Corollary 2.1. Because of the range of u, we could not extend Lemma 5.3 to all primes in $z<q \leq z^{2}$.

References

[BFI] E. Bombieri, J. Friedlander, H. Iwaniec, Primes in arithmetic progressions to large moduli, Acta Mathematica 156(1986), pp. 203-251.
[EP] P. Erdős, C. Pomerance, On the Normal Order of Prime Factors of $\phi(n)$, Rocky Mountain Journal of Mathematics, Volume 15, Number 2, Spring 1985.
[F] D. Fiorilli, On a Theorem of Bombieri, Friedlander and Iwaniec, Canadian J. Math 64(2012), pp. 1019-1035
[HR] G. H. Hardy, S. Ramanujan, The Normal Number of Prime Factors of a Number n, Quarterly Journal of Mathematics, Volume 48, pp. 76-92
[LP] F. Luca, C. Pomerance, On the Average Number of Divisors of the Euler Function, Publ. Math. Debrecen, 70/1-2 (2007), pp 125-148.
[LP2] F. Luca, C. Pomerance, Corrigendum: On the Average Number of Divisors of the Euler Function, Publ. Math. Debrecen, 89 / 1-2 (2016)
[MV] H. Montgomery, R. Vaughan, Multiplicative Number Theory I. Classical Theory, Cambridge University Press 2007
[Pe] C. Pehlivan, Some Average Results Connected with Reductions of Groups of Rational Numbers, Ph. D. Thesis (2015), Università Degli Studi Roma Tre.

[^0]: ${ }^{1}$ Keywords: Euler, Carmichael, Number of Divisors, Average, AMS Subject Classification Code: 11A25

