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Abstract. Let a > 1 be an integer. Denote by la(n) the multiplicative order of a modulo integers n . We
prove that ∑

n≤x,(n,a)=1

1

la(n)
= Oa

(
x exp

(
−
(

1

2
+ o(1)

)
log x

log log log x

log log x

))
,

which is an improvement over [19, Theorem 5].
Further, we obtain several applications toward number fields and 2-dimensional abelian varieties of CM-

type.

1. Introduction

Define la(n) by the multiplicative order of a modulo n. In [7], Kurlberg and Rudnick showed that
there exist a δ > 0 such that la(n) �

√
n exp (log n)δ for all but o(x) integers n ≤ x. In [8], Kurlberg

and Pomerance obtained the following result by applying Fouvry’s result (see [2]). For some γ > 0,

la(n)� n1/2+γ for positive proportion of n ≤ x.
On the other hand, Zelinsky [19] proved that∑

n≤x,(n,a)=1

ϕ(n)

la(n)
= Oa

(
x2

logα x

)
for any 0 < α < 3. Indeed, this result can be interpreted as∑

n≤x,(n,a)=1

1

la(n)
= Oa

(
x

logα x

)
for any 0 < α < 3. Furthermore, he was able to generalize to number fields. Let K be a number field, and
assume that UK its group of units is infinite. Let RK be the ring of integers in K. For integral ideal I,
denote by NI the norm of I, and ϕ(I) the Euler’s totient function of I, which is defined by:

ϕ(I) = NI
∏
p|I

(
1− 1

Np

)
.

Denote by UK(I) the subgroup of UK formed by elements which are 1 modulo I. He obtained that∑
NI≤x

ϕ(I)

[UK : UK(I)]
= OK

(
x2

logα x

)
This also can be interpreted as ∑

NI≤x

1

[UK : UK(I)]
= OK

(
x

logα x

)
.

In the author’s work [6, Theorem 2.3], it is shown that

[UK : UK(I)]� (log x)
1
2

(log x)2/5

for all but O(x exp(−2
5(log x)3/5)) integal ideals NI ≤ x. This implies that∑

NI≤x

1

[UK : UK(I)]
= OK

(
x exp

(
−2

5
(log x)2/5

))
.

1
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The same idea as in [6, Theorem 2.3] also applies to∑
n≤x,(n,a)=1

1

la(n)
= Oa

(
x exp

(
−2

5
(log x)2/5

))
.

We show that the same idea in [6, Theorem 2.3] further leads to∑
NI≤x

1

[UK : UK(I)]
= OK

(
x exp

(
−c
√

log x log log x
))

,

also ∑
n≤x,(n,a)=1

1

la(n)
= Oa

(
x exp

(
−c
√

log x log log x
))

for some positive constant c. Adopting an idea from Pomerance [13], we further improve these:

Theorem 1.1. Let la(n) be the multiplicative order of a modulo n. Then∑
n≤x,(n,a)=1

1

la(n)
= Oa

(
x exp

(
−
(

1

2
+ o(1)

)
log x

log log log x

log log x

))
.

Furthermore, let K be a number field, and assume that UK its group of units is infinite. For an integral
ideal I, denote by UK(I) the subgroup of UK formed by elements which are 1 modulo I. Then∑

NI≤x

1

[UK : UK(I)]
= OK

(
x exp

(
−
(

1

2
+ o(1)

)
log x

log log log x

log log x

))
.

It is possible to apply this to improve on [6, Theorem 1.8]. Let A be a g-dimensional (g ≥ 2) abelian
variety defined over a number field k. Let p be a prime in k such that A has a good reduction at p, and
denote by A(Fp) the reduction of A modulo p. It is known that A(Fp) has an abelian group structure

A(Fp) ' Z/d1(p)Z⊕ · · · ⊕ Z/dg(p)Z⊕ Z/e1(p)Z⊕ · · · ⊕ Z/eg(p)Z,
where di(p)|di+1(p), dg(p)|e1(p), and ei(p)|ei+1(p) for 1 ≤ i < g. For the definition of t(m), we refer to
Lemma 2.3.

Theorem 1.2. Let A be an absolutely simple abelian variety of dimension 2 defined over a degree 4
CM-field with CM-type (K,Φ, a). Suppose that the reflex type (K ′,Φ′, a′) satisfies K = K ′. Then we have∑

m<
√
x

t(m) = OK

(
x exp

(
−
(

1

4
+ o(1)

)
log x

log log log x

log log x

))
.

The significance in this theorem is that this opens up a possibility of proving a special case g = 2 of the
author’s Conjecture 1.1 in [6] unconditionally. If we are able to prove

πA(x; (mf), ai)�K (log x)B

for some positive absolute constant B in the case N(mf) > x/2, then this would probably help in bounding
the number of prime ideals with Np ≤ x in each t(m) residue classes ai modulo (mf). Then the following
conjecture (see [6, Conjecture 1.1]) would follow by counting the number of prime ideals splitting completely
in the division field k(A[m]) by considering residue classes (see also Lemma 2.3):

Conjecture 1.1. Let A be an absolutely simple abelian variety of dimension 2 defined over a degree 4
CM-field with CM-type (K,Φ, a). Suppose that the reflex type (K ′,Φ′, a′) satisfies K = K ′. Then we have∑

Np≤x
d1(p) = CALi(x) +OA,B

(
x

logB x

)
,

where

CA =
∞∑
m=1

ϕ(m)

[k(A[m]) : k]
.

In fact, this conjecture was made in an effort to generalize a theorem by Freiberg and Pollack [3, Theorem
1.1] to abelian varieties.
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2. Backgrounds and Proofs

2.1. Smooth Numbers. Let ψ(x, y) be the number of positive integers n ≤ x whose prime divisors p ≤ y.
For any U > 0, it is well known that

ψ(x, x1/u) = xρ(u) +O

(
x

log x

)
uniformly for 1 ≤ u ≤ U . The function ρ(u) is called the Dickman function, and it satisfies

ρ(u) = 1 for 0 < u ≤ 1,

−uρ′(u) = ρ(u− 1) for u > 1.

This function also satisfies the following asymptotic formula (see [1]):

ρ(u) = exp

(
−u
(

log u+ log log u− 1 +
log log u

log u
− 1

log u
+O

(
(log log u)2

(log u)2

)))
.

From the upper bound of de Bruijn [1], and lower bound of Hildebrand [5], we have

Theorem 2.1. Let ε > 0, we have

ψ(x, x1/u) = xρ(u) exp
(
Oε(u exp(−(log u)3/5−ε))

)
uniformly for 1 ≤ u ≤ (1− ε) log x/ log log x.

For a fixed positive c, let u =
√

log x
c
√

log log x
. Then we have

Corollary 2.1. For x ≥ x0(c), we have

ψ
(
x, exp

(
c
√

log x log log x
))

= x exp

((
− 1

2c
+ o(1)

)√
log x log log x

)
.

For a given number field K, define ψK(x, y) to be the number of integral ideals I with NI ≤ x such
that Np ≤ y for any prime ideal p|I. Then the above theorem and corollary have their analogue (see [4,
Section 1.3]):

Theorem 2.2. Let ε > 0, we have

ψK(x, x1/u) = ψK(x, x)ρ(u) exp
(
Oε(u exp(−(log u)3/5−ε))

)
uniformly for 1 ≤ u ≤ (1− ε) log x/ log log x.

As before, for a fixed positive c, let u =
√

log x
c
√

log log x
. Then we have

Corollary 2.2. For x ≥ x0(c), we have

ψK

(
x, exp

(
c
√

log x log log x
))

= ψK(x, x) exp

((
− 1

2c
+ o(1)

)√
log x log log x

)
.

Let a > 1 be an integer. For some z > 0, it is clear that la(n) < z implies n|
∏
i<z(a

i − 1). Since the

number of prime factors of
∏
i<z(a

i− 1) is Oa(z
2/ log z), the number of integers n ≤ x such that la(n) < z

is Oa(ψ(x, caz
2)). This is due to the fact that n is consisted of prime divisors of

∏
i<z(a

i − 1). Therefore,

by taking z = exp
(
c
√

log x log log x
)
, we establish the following:

Lemma 2.1. Let a > 1 be an integer. Then there is ca > 0 such that

la(n) ≥ exp
(
ca
√

log x log log x
)

for all but Oa
(
x exp

(
−ca
√

log x log log x
))

integers n ≤ x.
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Using the lower bound exp
(
ca
√

log x log log x
)

for most n ≤ x, and the trivial lower bound 1 for the
exceptional set of n ≤ x, it follows that∑

n≤x,(n,a)=1

1

la(n)
= Oa

(
x exp

(
−ca

√
log x log log x

))
for some positive constant ca.

Furthermore, let K be a number field, and assume that UK = (OK)∗ its group of units is infinite. For
integral ideal I, denote by NI the norm of I. Denote by UK(I) the subgroup of UK formed by elements
which are 1 modulo I. Let a ∈ UK be a unit of infinite order. We use the notation la(I) for the order of a
modulo I. Then we have

[UK : UK(I)] ≥ la(I).

The same idea as above applies, and we obtain for some cK > 0,∑
NI≤x

1

[UK : UK(I)]
= OK

(
x exp

(
−cK

√
log x log log x

))
,

To prove Theorem 1.1, we adopt an idea of Pomerance [13, Theorem 1]:

Theorem 2.3. Let a > 1 be an integer. There is an x0(a) such that if x ≥ x0(a), then∑
m≤x,la(m)=n

1 ≤ x exp

(
−
(

1

2
+ o(1)

)
log x

log log log x

log log x

)
.

We may assume that n < x. Similarly as in [1, Section 3], Pomerance applies Rankin’s method. Then
for any c > 0, ∑

m≤x,la(m)=n

1 ≤ xc
∑

la(m)=n

m−c ≤ xc
∑

p|m⇒la(p)|n

m−c = xc
∏

la(p)|n

(1− p−c)−1 = xcA.

Then the optimal choice for c is c = 1 − (4 + log log log x)/(2 log log x) with a requirement logA =
o(log x/ log log x). Here, A is the Euler product∏

la(p)|n

(1− p−c)−1

which depends on both a and n. Taking the sum of the LHS of Theorem 2.3 for n < z = exp
(

1
4 log x log log log x

log log x

)
,

we obtain a strengthened version of Lemma 2.1.

Lemma 2.2. Let a > 1 be an integer. Then there is ca > 0 such that

la(n) ≥ exp

(
1

4
log x

log log log x

log log x

)
for all but Oa

(
x exp

(
−
(

1
4 + o(1)

)
log x log log log x

log log x

))
integers n ≤ x.

However, we do not use the lemma to prove Theorem 1.2. Instead, observe the following:∑
m≤x

1

la(m)
=
∑
n<x

1

n

∑
m≤x,la(m)=n

1.

Applying Theorem 2.3 directly, we obtain that∑
n<x

1

n

∑
m≤x,la(m)=n

1 ≤
∑
n<x

1

n
x exp

(
−
(

1

2
+ o(1)

)
log x

log log log x

log log x

)

= Oa

(
x exp

(
−
(

1

2
+ o(1)

)
log x

log log log x

log log x

))
.

This proves the first part of Theorem 1.1. The statement for the number fields follows from a modified
version of Theorem 2.3.
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Theorem 2.4. Let a be an integral element of K which is not a root of unity. There is an x0(K, a) such
that if x ≥ x0(K, a), then ∑

NI≤x,la(I)=n

1 ≤ x exp

(
−
(

1

2
+ o(1)

)
log x

log log log x

log log x

)
.

The proof is almost identical, with only difference in the Euler product:∑
NI≤x,la(I)=n

1 ≤ xc
∑

la(I)=n

NI−c ≤ xc
∑

p|I⇒la(p)|n

NI−c = xc
∏

la(p)|n

(1−Np−c)−1 = xcA.

As in the proof of [13, Theorem 1], we may assume that x > n otherwise there are no I satisfying NI ≤ x
together with la(I) = n. The Euler product A is treated by

logA =
∑
la(p)|n

Np−c +O([K : Q]) =
∑
d|n

∑
la(p)=d

Np−c +O([K : Q]).

The prime ideals p with la(p) = d all divide the principal ideal (ad − 1). Then the number of prime ideals

p dividing (ad − 1) is O
(

[K : Q] d log |a′|
log(d+1)

)
where a′ is a conjugate of a with maximal |a′|. Let q1, · · · , qt be

all prime divisors of (ad − 1). Note that for a given norm, there are at most [K : Q] prime ideals of the
same norm. Each prime divisor qi of (ad − 1) satisfies Nqi ≡ 1 (mod d). This is because (OK/qi)∗ is a
cyclic group of order Nqi − 1. Then we have∑

la(p)=d

Np−c =
t∑
i=1

Nq−ci ≤ [K : Q]
∑

j≤d log |a′|

(dj + 1)−c ≤ [K : Q]d−c(1− c)−1(d log |a′|)1−c

Following the rest of the proof, we obtain that

logA ≤ [K : Q] log |a′| 2 log log x

4 + log log log x
(log x)1/2 +O([K : Q]),

which yields logA = o(log x/ log log x). This completes the proof. Applying Theorem 2.4, we obtain the
second part of Theorem 1.1.

We need a principal ideal version of Theorem 2.4 to prove corresponding result on 2-dimensional abelian
varieties with CM type.

Theorem 2.5. Let a be an integral element of K which is not a root of unity. There is an x0(K, a) such
that if x ≥ x0(K, a), then ∑

m≤x,la((m))=n

1 ≤ x exp

(
−
(

1

2
+ o(1)

)
log x

log log log x

log log x

)
.

The proof is almost identical, with only difference in the Euler product:∑
m≤x,la((m))=n

1 ≤ xc
∑

la((m))=n

m−c ≤ xc
∑

p|m⇒la((p))|n

m−c = xc
∏

la((p))|n

(1− p−c)−1 = xcA.

As in the proof of [13, Theorem 1], we may assume that x[K:Q] > n otherwise there are no m satisfying
m ≤ x together with la((m)) = n. The Euler product A is treated by

logA =
∑

la((p))|n

p−c +O(1) =
∑
d|n

∑
la((p))=d

p−c +O(1).

The primes p with la((p)) = d all divide the principal ideal (ad − 1). Then prime p dividing (ad − 1) also

divides the integer N(ad − 1). The number of such p is O
(

[K : Q] d log |a′|
log(d+1)

)
where a′ is a conjugate of a

with maximal |a′|. Let q1, · · · , qt be all prime divisors of N(ad − 1). Each prime divisor qi of N(ad − 1)
satisfies qi ≡ 1 (mod d). Then we have∑

la((p))=d

p−c =
t∑
i=1

q−ci ≤
∑

j≤[K:Q]d log |a′|

(dj + 1)−c ≤ d−c(1− c)−1([K : Q]d log |a′|)1−c



6 KIM, SUNGJIN

Following the rest of the proof, we obtain that

logA ≤ [K : Q] log |a′| 2 log log x

4 + log log log x
(log x)1/2 +O(1),

which yields logA = o(log x/ log log x). This completes the proof.

We may insert an extra factor Rw(m) where w(m) is the number of distinct prime divisors of m, yet the
upper bound still holds.

Theorem 2.6. Let a be an integral element of K which is not a root of unity. Let R > 0. There is an
x0(K, a,R) such that if x ≥ x0(K, a,R), then∑

m≤x,la((m))=n

Rw(m) ≤ x exp

(
−
(

1

2
+ o(1)

)
log x

log log log x

log log x

)
.

In this one, the Euler product behaves likes Rth power of the previous one. In fact,∑
m≤x,la((m))=n

Rw(m) ≤ xc
∑

la((m))=n

Rw(m)m−c ≤ xc
∑

p|m⇒la((p))|n

Rw(m)m−c

= xc
∏

la((p))|n

(1 +Rp−c +Rp−2c + · · · ) = xcA.

the Euler product A is treated by

logA =
∑

la((p))|n

Rp−c +O(R) =
∑
d|n

∑
la((p))=d

Rp−c +O(R).

Following the rest of the proof, we obtain that

logA ≤ R[K : Q] log |a′| 2 log log x

4 + log log log x
(log x)1/2 +O(R),

which yields logA = o(log x/ log log x). This completes the proof.

Corollary 2.3. Let a be an integral element of K which is not a root of unity. Let R > 0. Then∑
m≤x

Rw(m)

la((m))
≤ x exp

(
−
(

1

2
+ o(1)

)
log x

log log log x

log log x

)
.

This is an easy consequence of Theorem 2.6. We write∑
m≤x

Rw(m)

la((m))
=

∑
n<x[K:Q]

1

n

∑
m≤x,la((m))=n

Rw(m)

≤
∑

n<x[K:Q]

1

n
x exp

(
−
(

1

2
+ o(1)

)
log x

log log log x

log log x

)

= x exp

(
−
(

1

2
+ o(1)

)
log x

log log log x

log log x

)
.

2.2. Abelian Varieties with CM-type. We give necessary definitions and theorems that are required
to state Theorem 1.3. For more details, one can refer to [16], also [9]. The Definition 2.1 to Lemma 2.5 are
also required and present in [6]. Many of those are stated and proved in detail in [17], [15], also in [18]).
We present them for this paper to be self-contained. The endomorphism rings of abelian varieties are far
more complex than those of elliptic curves. However, their center (as an algebra) can be described via
CM-fields.

Definition 2.1. A CM-field is a totally imaginary quadratic extension of a totally real number field.

The following theorem is [9, p6, Theorem 1.3]:

Theorem 2.7. Let A be an abelian variety. Then the center K of EndQA := EndA⊗Q is either a totally
real field or a CM field.
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Furthermore, we have by the following proposition (See [16, p36, Proposition 1]) that the degree of K
in above theorem is bounded by 2dimA.

Proposition 2.1. Let A be an abelian variety of dimension g and S a commutative semi-simple subalgebra
of EndQA. Then we have

[S : Q] ≤ 2g.

In particular, K ⊂ S, which gives [K : Q] ≤ [S : Q] ≤ 2g. We are interested in the case that
[K : Q] = 2g, and K is a CM field. The following definition generalizes complex multiplication of elliptic
curves to abelian varieties. (See [16, p41, Theorem 2], also [9, p72])

Theorem 2.8. Let A be an abelian variety of dimension g. Suppose that the center of EndQA is K, and
K is a CM field of degree 2g over Q. We say that A admits complex multiplication. In this case, there
is an ordered set Φ = {φ1, · · · , φg} of g distinct isomorphisms of K into C such that no two of them is
conjugate. We call this pair (K,Φ) the CM-type. Furthermore, there exists a lattice a in K such that there
is an analytic isomorphism θ : Cg/Φ(a) −→ A(C). We write (K,Φ, a) to indicate that a is a lattice in
K with respect to θ. In short, we say that A is of type(CM-type) (K,Φ, a) with respect to θ. Under the
inclusion i : K −→ EndQA, we have that

O = {τ ∈ K|i(τ) ∈ EndA} = {τ ∈ K|τa ⊂ a}

is an order in K.

This gives rise to the following composition:

Corollary 2.4. Let A be an abelian variety of dimension g with CM-type (K,Φ, a) with respect to θ. Then
θ ◦ Φ maps K/a to Ator, i. e.

K/a
Φ−−−→ Cg/Φ(a)

θ−−−→ Ator.

Proof. This is clear from noticing that a⊗Q = K. Also, Φ is Q-linear, and Φ(a)⊗Q is a torsion subgroup
of Cg/Φ(a). �

We define a reflex-type of a given CM-type. (See [16, p59-62])
Let K be a CM-field of degree 2g, Φ = {φ1, · · · , φg} a set of g embeddings of K into C so that (K,Φ)

is a CM-type. Let L be a Galois extension of Q containing K, and G the Galois group of L over Q. Let
ρ be an element of G that induces complex conjugation on K. Let S be the set of all elements of G that
induce φi for some i = 1, · · · , g.

A CM-type is called primitive if any abelian variety with the type is simple. The following proposition
gives a criterion for primitiveness of CM-type. (See [16, p61, Proposition 26])

Proposition 2.2. Let (K,Φ) be a CM-type. Let L, G, ρ, S as above, and H1 the subgroup of G corre-
sponding to K. Put

HS = {γ ∈ G|γS = S}.
Then (K,Φ) is primitive if and only if H1 = HS.

The following proposition relates a CM-type (K,Φ) and a primitive CM-type (K ′,Φ′). (See [16, p62,
Proposition 28])

Proposition 2.3. Let L, G, ρ, S as above. Put

S′ = {σ−1|σ ∈ S}, HS′ = {γ ∈ G|γS′ = S′}.

Let K ′ be the subfield of L corresponding to HS′, and let Φ′ = {ψ1, · · · , ψg′} be a set of g′ embeddings of
K ′ to C so that no two of them are conjugate. Then (K ′,Φ′) is a primitive CM-type.

We call (K ′,Φ′) the reflex of CM-type (K,Φ). We define a type norm for a given CM-type. The following
map is well defined on K ′×:

N(K′,Φ′) : K ′× −→ K×, x 7→
∏
σ∈Φ′

σ(x).
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Let A×K , A×K′ be the K-ideles and K ′-ideles respectively. Then this map allows an extension to N(K′,Φ′) :

A×K′ −→ A×K . This extension is called the type norm. It can be seen that N(K′,Φ′) is a continuous

homomorphism on A×K′ . (See [16, p124]) The field of definition k of an abelian variety A with CM-type
(K,Φ) contains the reflex K ′. In brief, k ⊃ K ′. Thus, we can also define the type norm on the field of
definition:

NΦ′k
= N(K′,Φ′)Nk|K′

where Nk|K′ is the standard norm map of ideles. Note that if g = 1 (elliptic curves) then K = K ′.
An analogue of [10, p 162, Lemma 4] can be obtained from applying the Main Theorem of Complex

Multiplication (See [9, Theorem 1.1, p84]). The idea of the proof is the same as in [10, p 162, Lemma 4],
but we need a modification due to type norm factor in the Main Theorem of Complex Multiplication.

Lemma 2.3. Let A, (K,Φ), (K ′,Φ′), k be the same notations as before. Let m ≥ 2 be an integer. Then
there exists a nonzero rational integer f such that

k(A[m]) ⊂ k(mf),

where k(mf) is the ray class field corresponding to the principal ideal (mf) ⊂ k.

For the proof of this, we refer to [6, Lemma 2.1].
Let K be a number field of degree n = r1 + 2r2 with ring of integers OK and r1 the number of distinct

real embeddings of K, and let m be an integral ideal of K. Define a m-ideal class group by an abelian
group of equivalence classes of ideals in the following relation:

a ∼ b (mod m),

if ab−1 = (α), α ∈ K, α ≡ 1 (mod m), and α is totally positive. Let α, β ∈ K. Denote by α ≡ β (mod* m)
if vp(m) ≤ vp(α − β) for all primes p and αβ−1 is totally positive. Then we can rewrite the equivalence
relation ∼ by

ab−1 ∈ Pm
K = {(α) : α ≡ 1 (mod* m)}.

The m-ideal class group coincides with our definition Cm(K) = Jm
K/P

m
K in the previous chapter. Denote

by h(m) the cardinality of Jm
K/P

m
K , and h by the class number of K. We have a formula that relates h(m)

and the class number h of K. This follows from an exact sequence:

U(K) −→ (OK/mOK)× ⊕ {±1}r1 −→ Cm(K) −→ C(K) −→ 1.

Denote by T (m) the cardinality of the image of the unit group U(K) in (OK/mOK)× ⊕ {±1}r1 . Then we
have

h(m) =
2r1hϕ(m)

T (m)

where ϕ(m) = |(OK/mOK)×|.
The following lemma is a direct corollary of Lemma 2.3:

Lemma 2.4. Let A, (K,Φ), (K ′,Φ′), k be the same notations as before. Suppose also that p ⊂ k is a prime
of good reduction for A, and p - m. Let f be the nonzero integer as in Lemma 2.3. Given m ≥ 1, there are
t(m) ideal classes modulo (mf) ⊂ k such that

p splits completely in k(A[m]) if and only if p ∼ a1, · · · , p ∼ at(m).

Furthermore, t(m) satisfies the following identity by class field theory,

t(m)

h((mf))
=

1

[k(A[m]) : k]
.

By Lemma 2.5 below, there is an absolute positive constant R depending only on A such that

t(m) =
h((mf))

[k(A[m]) : k]
≤ m2l−ν

T ((mf))
Rw(m).

The last inequality can be obtained from applying the following theorem on extension degree of division
fields along with a formula for h((mf)). (See [14, Theorem 1.1], also [12])
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Lemma 2.5. Let A be an abelian variety of CM type (K,Φ, a) of dimension g defined over a number field
k. Then for some c1, c2 > 0, nm = [k(A[m]) : k] satisfies

mνc
w(m)
1 ≤ nm ≤ mνc

w(m)
2 ,

where w(m) is the number of distinct prime factors of m, ν = Rank(Φ,K), and 2 + log2 g ≤ ν ≤ g + 1 if
A is absolutely simple. Since the reflex type (Φ′,K ′) is always simple and Rank(Φ,K) = Rank(Φ′,K ′), we
also have that 2 + log2 g

′ ≤ ν ≤ g′ + 1 if [K ′ : Q] = g′. Thus, we have

max(2 + log2 g, 2 + log2 g
′) ≤ ν ≤ min(g + 1, g′ + 1).

On the assumptions for Theorem 1.2, g = 2 gives the only choice for ν = g + 1 = 3. Then Lemma 2.4
gives

t(m) ≤ m

T ((mf))
Rw(m).

Taking the sum over m ≤
√
x above, we have by Corollary 2.3 in section 2.1,∑

m≤
√
x

t(m)�K

√
x
∑
m≤
√
x

Rw(m)

T ((mf))
�K

√
x
√
x exp

(
−
(

1

4
+ o(1)

)
log x

log log log x

log log x

)
.

This completes the proof of Theorem 1.2.
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