AVERAGE RECIPROCALS OF THE ORDER OF a MODULO n

KIM, SUNGJIN

Abstract. Let $a>1$ be an integer. Denote by $l_{a}(n)$ the multiplicative order of a modulo integers n. We prove that

$$
\sum_{n \leq x,(n, a)=1} \frac{1}{l_{a}(n)}=O_{a}\left(x \exp \left(-\left(\frac{1}{2}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right)\right)
$$

which is an improvement over [19, Theorem 5].
Further, we obtain several applications toward number fields and 2-dimensional abelian varieties of CMtype.

1. Introduction

Define $l_{a}(n)$ by the multiplicative order of a modulo n. In [7], Kurlberg and Rudnick showed that there exist a $\delta>0$ such that $l_{a}(n) \gg \sqrt{n} \exp (\log n)^{\delta}$ for all but $o(x)$ integers $n \leq x$. In [8], Kurlberg and Pomerance obtained the following result by applying Fouvry's result (see [2]). For some $\gamma>0$, $l_{a}(n) \gg n^{1 / 2+\gamma}$ for positive proportion of $n \leq x$.

On the other hand, Zelinsky [19] proved that

$$
\sum_{n \leq x,(n, a)=1} \frac{\varphi(n)}{l_{a}(n)}=O_{a}\left(\frac{x^{2}}{\log ^{\alpha} x}\right)
$$

for any $0<\alpha<3$. Indeed, this result can be interpreted as

$$
\sum_{n \leq x,(n, a)=1} \frac{1}{l_{a}(n)}=O_{a}\left(\frac{x}{\log ^{\alpha} x}\right)
$$

for any $0<\alpha<3$. Furthermore, he was able to generalize to number fields. Let K be a number field, and assume that U_{K} its group of units is infinite. Let R_{K} be the ring of integers in K. For integral ideal I, denote by $N I$ the norm of I, and $\varphi(I)$ the Euler's totient function of I, which is defined by:

$$
\varphi(I)=N I \prod_{\mathfrak{p} \mid I}\left(1-\frac{1}{N \mathfrak{p}}\right)
$$

Denote by $U_{K}(I)$ the subgroup of U_{K} formed by elements which are 1 modulo I. He obtained that

$$
\sum_{N I \leq x} \frac{\varphi(I)}{\left[U_{K}: U_{K}(I)\right]}=O_{K}\left(\frac{x^{2}}{\log ^{\alpha} x}\right)
$$

This also can be interpreted as

$$
\sum_{N I \leq x} \frac{1}{\left[U_{K}: U_{K}(I)\right]}=O_{K}\left(\frac{x}{\log ^{\alpha} x}\right)
$$

In the author's work [6, Theorem 2.3], it is shown that

$$
\left[U_{K}: U_{K}(I)\right] \gg(\log x)^{\frac{1}{2}(\log x)^{2 / 5}}
$$

for all but $O\left(x \exp \left(-\frac{2}{5}(\log x)^{3 / 5}\right)\right)$ integal ideals $N I \leq x$. This implies that

$$
\sum_{N I \leq x} \frac{1}{\left[U_{K}: U_{K}(I)\right]}=O_{K}\left(x \exp \left(-\frac{2}{5}(\log x)^{2 / 5}\right)\right)
$$

The same idea as in [6, Theorem 2.3] also applies to

$$
\sum_{n \leq x,(n, a)=1} \frac{1}{l_{a}(n)}=O_{a}\left(x \exp \left(-\frac{2}{5}(\log x)^{2 / 5}\right)\right) .
$$

We show that the same idea in [6, Theorem 2.3] further leads to

$$
\sum_{N I \leq x} \frac{1}{\left[U_{K}: U_{K}(I)\right]}=O_{K}(x \exp (-c \sqrt{\log x \log \log x}))
$$

also

$$
\sum_{n \leq x,(n, a)=1} \frac{1}{l_{a}(n)}=O_{a}(x \exp (-c \sqrt{\log x \log \log x}))
$$

for some positive constant c. Adopting an idea from Pomerance [13], we further improve these:
Theorem 1.1. Let $l_{a}(n)$ be the multiplicative order of a modulo n. Then

$$
\sum_{n \leq x,(n, a)=1} \frac{1}{l_{a}(n)}=O_{a}\left(x \exp \left(-\left(\frac{1}{2}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right)\right) .
$$

Furthermore, let K be a number field, and assume that U_{K} its group of units is infinite. For an integral ideal I, denote by $U_{K}(I)$ the subgroup of U_{K} formed by elements which are 1 modulo I. Then

$$
\sum_{N I \leq x} \frac{1}{\left[U_{K}: U_{K}(I)\right]}=O_{K}\left(x \exp \left(-\left(\frac{1}{2}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right)\right) .
$$

It is possible to apply this to improve on [6, Theorem 1.8]. Let \mathcal{A} be a g-dimensional $(g \geq 2)$ abelian variety defined over a number field k. Let \mathfrak{p} be a prime in k such that \mathcal{A} has a good reduction at \mathfrak{p}, and denote by $\mathcal{A}\left(\mathbb{F}_{\mathfrak{p}}\right)$ the reduction of \mathcal{A} modulo \mathfrak{p}. It is known that $\mathcal{A}\left(\mathbb{F}_{\mathfrak{p}}\right)$ has an abelian group structure

$$
\mathcal{A}\left(\mathbb{F}_{\mathfrak{p}}\right) \simeq \mathbb{Z} / d_{1}(\mathfrak{p}) \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / d_{g}(\mathfrak{p}) \mathbb{Z} \oplus \mathbb{Z} / e_{1}(\mathfrak{p}) \mathbb{Z} \oplus \cdots \oplus \mathbb{Z} / e_{g}(\mathfrak{p}) \mathbb{Z}
$$

where $d_{i}(\mathfrak{p})\left|d_{i+1}(\mathfrak{p}), d_{g}(\mathfrak{p})\right| e_{1}(\mathfrak{p})$, and $e_{i}(\mathfrak{p}) \mid e_{i+1}(\mathfrak{p})$ for $1 \leq i<g$. For the definition of $t(m)$, we refer to Lemma 2.3.
Theorem 1.2. Let \mathcal{A} be an absolutely simple abelian variety of dimension 2 defined over a degree 4 CM-field with CM-type (K, Φ, \mathfrak{a}). Suppose that the reflex type ($K^{\prime}, \Phi^{\prime}, \mathfrak{a}^{\prime}$) satisfies $K=K^{\prime}$. Then we have

$$
\sum_{m<\sqrt{x}} t(m)=O_{K}\left(x \exp \left(-\left(\frac{1}{4}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right)\right) .
$$

The significance in this theorem is that this opens up a possibility of proving a special case $g=2$ of the author's Conjecture 1.1 in [6] unconditionally. If we are able to prove

$$
\pi_{\mathcal{A}}\left(x ;(m f), \mathfrak{a}_{i}\right)<_{K}(\log x)^{B}
$$

for some positive absolute constant B in the case $N(m f)>x / 2$, then this would probably help in bounding the number of prime ideals with $N \mathfrak{p} \leq x$ in each $t(m)$ residue classes \mathfrak{a}_{i} modulo ($m f$). Then the following conjecture (see [6, Conjecture 1.1]) would follow by counting the number of prime ideals splitting completely in the division field $k(\mathcal{A}[m])$ by considering residue classes (see also Lemma 2.3):
Conjecture 1.1. Let \mathcal{A} be an absolutely simple abelian variety of dimension 2 defined over a degree 4 CM-field with CM-type (K, Φ, \mathfrak{a}). Suppose that the reflex type ($K^{\prime}, \Phi^{\prime}, \mathfrak{a}^{\prime}$) satisfies $K=K^{\prime}$. Then we have

$$
\sum_{N \mathfrak{p} \leq x} d_{1}(\mathfrak{p})=C_{\mathcal{A}} L i(x)+O_{\mathcal{A}, B}\left(\frac{x}{\log ^{B} x}\right),
$$

where

$$
C_{\mathcal{A}}=\sum_{m=1}^{\infty} \frac{\varphi(m)}{[k(\mathcal{A}[m]): k]} .
$$

In fact, this conjecture was made in an effort to generalize a theorem by Freiberg and Pollack [3, Theorem 1.1] to abelian varieties.

2. Backgrounds and Proofs

2.1. Smooth Numbers. Let $\psi(x, y)$ be the number of positive integers $n \leq x$ whose prime divisors $p \leq y$. For any $U>0$, it is well known that

$$
\psi\left(x, x^{1 / u}\right)=x \rho(u)+O\left(\frac{x}{\log x}\right)
$$

uniformly for $1 \leq u \leq U$. The function $\rho(u)$ is called the Dickman function, and it satisfies

$$
\begin{gathered}
\rho(u)=1 \quad \text { for } 0<u \leq 1 \\
-u \rho^{\prime}(u)=\rho(u-1) \quad \text { for } u>1 .
\end{gathered}
$$

This function also satisfies the following asymptotic formula (see [1]):

$$
\rho(u)=\exp \left(-u\left(\log u+\log \log u-1+\frac{\log \log u}{\log u}-\frac{1}{\log u}+O\left(\frac{(\log \log u)^{2}}{(\log u)^{2}}\right)\right)\right) .
$$

From the upper bound of de Bruijn [1], and lower bound of Hildebrand [5], we have
Theorem 2.1. Let $\epsilon>0$, we have

$$
\psi\left(x, x^{1 / u}\right)=x \rho(u) \exp \left(O_{\epsilon}\left(u \exp \left(-(\log u)^{3 / 5-\epsilon}\right)\right)\right)
$$

uniformly for $1 \leq u \leq(1-\epsilon) \log x / \log \log x$.
For a fixed positive c, let $u=\frac{\sqrt{\log x}}{c \sqrt{\log \log x}}$. Then we have
Corollary 2.1. For $x \geq x_{0}(c)$, we have

$$
\psi(x, \exp (c \sqrt{\log x \log \log x}))=x \exp \left(\left(-\frac{1}{2 c}+o(1)\right) \sqrt{\log x \log \log x}\right) .
$$

For a given number field K, define $\psi_{K}(x, y)$ to be the number of integral ideals I with $N I \leq x$ such that $N \mathfrak{p} \leq y$ for any prime ideal $\mathfrak{p} \mid I$. Then the above theorem and corollary have their analogue (see [4, Section 1.3]):

Theorem 2.2. Let $\epsilon>0$, we have

$$
\psi_{K}\left(x, x^{1 / u}\right)=\psi_{K}(x, x) \rho(u) \exp \left(O_{\epsilon}\left(u \exp \left(-(\log u)^{3 / 5-\epsilon}\right)\right)\right)
$$

uniformly for $1 \leq u \leq(1-\epsilon) \log x / \log \log x$.
As before, for a fixed positive c, let $u=\frac{\sqrt{\log x}}{c \sqrt{\log \log x}}$. Then we have
Corollary 2.2. For $x \geq x_{0}(c)$, we have

$$
\psi_{K}(x, \exp (c \sqrt{\log x \log \log x}))=\psi_{K}(x, x) \exp \left(\left(-\frac{1}{2 c}+o(1)\right) \sqrt{\log x \log \log x}\right) .
$$

Let $a>1$ be an integer. For some $z>0$, it is clear that $l_{a}(n)<z$ implies $n \mid \prod_{i<z}\left(a^{i}-1\right)$. Since the number of prime factors of $\prod_{i<z}\left(a^{i}-1\right)$ is $O_{a}\left(z^{2} / \log z\right)$, the number of integers $n \leq x$ such that $l_{a}(n)<z$ is $O_{a}\left(\psi\left(x, c_{a} z^{2}\right)\right)$. This is due to the fact that n is consisted of prime divisors of $\prod_{i<z}\left(a^{i}-1\right)$. Therefore, by taking $z=\exp (c \sqrt{\log x \log \log x})$, we establish the following:

Lemma 2.1. Let $a>1$ be an integer. Then there is $c_{a}>0$ such that

$$
l_{a}(n) \geq \exp \left(c_{a} \sqrt{\log x \log \log x}\right)
$$

for all but $O_{a}\left(x \exp \left(-c_{a} \sqrt{\log x \log \log x}\right)\right)$ integers $n \leq x$.

Using the lower bound $\exp \left(c_{a} \sqrt{\log x \log \log x}\right)$ for most $n \leq x$, and the trivial lower bound 1 for the exceptional set of $n \leq x$, it follows that

$$
\sum_{n \leq x,(n, a)=1} \frac{1}{l_{a}(n)}=O_{a}\left(x \exp \left(-c_{a} \sqrt{\log x \log \log x}\right)\right)
$$

for some positive constant c_{a}.
Furthermore, let K be a number field, and assume that $U_{K}=\left(\mathcal{O}_{K}\right)^{*}$ its group of units is infinite. For integral ideal I, denote by $N I$ the norm of I. Denote by $U_{K}(I)$ the subgroup of U_{K} formed by elements which are 1 modulo I. Let $a \in U_{K}$ be a unit of infinite order. We use the notation $l_{a}(I)$ for the order of a modulo I. Then we have

$$
\left[U_{K}: U_{K}(I)\right] \geq l_{a}(I)
$$

The same idea as above applies, and we obtain for some $c_{K}>0$,

$$
\sum_{N I \leq x} \frac{1}{\left[U_{K}: U_{K}(I)\right]}=O_{K}\left(x \exp \left(-c_{K} \sqrt{\log x \log \log x}\right)\right)
$$

To prove Theorem 1.1, we adopt an idea of Pomerance [13, Theorem 1]:
Theorem 2.3. Let $a>1$ be an integer. There is an $x_{0}(a)$ such that if $x \geq x_{0}(a)$, then

$$
\sum_{m \leq x, l_{a}(m)=n} 1 \leq x \exp \left(-\left(\frac{1}{2}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right)
$$

We may assume that $n<x$. Similarly as in [1, Section 3], Pomerance applies Rankin's method. Then for any $c>0$,

$$
\sum_{m \leq x, l_{a}(m)=n} 1 \leq x^{c} \sum_{l_{a}(m)=n} m^{-c} \leq x^{c} \sum_{p\left|m \Rightarrow l_{a}(p)\right| n} m^{-c}=x^{c} \prod_{l_{a}(p) \mid n}\left(1-p^{-c}\right)^{-1}=x^{c} A
$$

Then the optimal choice for c is $c=1-(4+\log \log \log x) /(2 \log \log x)$ with a requirement $\log A=$ $o(\log x / \log \log x)$. Here, A is the Euler product

$$
\prod_{l_{a}(p) \mid n}\left(1-p^{-c}\right)^{-1}
$$

which depends on both a and n. Taking the sum of the LHS of Theorem 2.3 for $n<z=\exp \left(\frac{1}{4} \log x \frac{\log \log \log x}{\log \log x}\right)$, we obtain a strengthened version of Lemma 2.1.

Lemma 2.2. Let $a>1$ be an integer. Then there is $c_{a}>0$ such that

$$
l_{a}(n) \geq \exp \left(\frac{1}{4} \log x \frac{\log \log \log x}{\log \log x}\right)
$$

for all but $O_{a}\left(x \exp \left(-\left(\frac{1}{4}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right)\right)$ integers $n \leq x$.
However, we do not use the lemma to prove Theorem 1.2. Instead, observe the following:

$$
\sum_{m \leq x} \frac{1}{l_{a}(m)}=\sum_{n<x} \frac{1}{n} \sum_{m \leq x, l_{a}(m)=n} 1
$$

Applying Theorem 2.3 directly, we obtain that

$$
\begin{aligned}
\sum_{n<x} \frac{1}{n} \sum_{m \leq x, l_{a}(m)=n} 1 & \leq \sum_{n<x} \frac{1}{n} x \exp \left(-\left(\frac{1}{2}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right) \\
& =O_{a}\left(x \exp \left(-\left(\frac{1}{2}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right)\right)
\end{aligned}
$$

This proves the first part of Theorem 1.1. The statement for the number fields follows from a modified version of Theorem 2.3.

Theorem 2.4. Let a be an integral element of K which is not a root of unity. There is an $x_{0}(K, a)$ such that if $x \geq x_{0}(K, a)$, then

$$
\sum_{N I \leq x, l_{a}(I)=n} 1 \leq x \exp \left(-\left(\frac{1}{2}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right)
$$

The proof is almost identical, with only difference in the Euler product:

$$
\sum_{N I \leq x, l_{a}(I)=n} 1 \leq x^{c} \sum_{l_{a}(I)=n} N I^{-c} \leq x^{c} \sum_{\mathfrak{p}\left|I \Rightarrow l_{a}(\mathfrak{p})\right| n} N I^{-c}=x^{c} \prod_{l_{a}(\mathfrak{p}) \mid n}\left(1-N \mathfrak{p}^{-c}\right)^{-1}=x^{c} A .
$$

As in the proof of $[13$, Theorem 1], we may assume that $x>n$ otherwise there are no I satisfying $N I \leq x$ together with $l_{a}(I)=n$. The Euler product A is treated by

$$
\log A=\sum_{l_{a}(\mathfrak{p}) \mid n} N \mathfrak{p}^{-c}+O([K: \mathbb{Q}])=\sum_{d \mid n} \sum_{l_{a}(\mathfrak{p})=d} N \mathfrak{p}^{-c}+O([K: \mathbb{Q}])
$$

The prime ideals \mathfrak{p} with $l_{a}(\mathfrak{p})=d$ all divide the principal ideal $\left(a^{d}-1\right)$. Then the number of prime ideals \mathfrak{p} dividing $\left(a^{d}-1\right)$ is $O\left([K: \mathbb{Q}] \frac{d \log \left|a^{\prime}\right|}{\log (d+1)}\right)$ where a^{\prime} is a conjugate of a with maximal $\left|a^{\prime}\right|$. Let $\mathfrak{q}_{1}, \cdots, \mathfrak{q}_{t}$ be all prime divisors of $\left(a^{d}-1\right)$. Note that for a given norm, there are at most $[K: \mathbb{Q}]$ prime ideals of the same norm. Each prime divisor \mathfrak{q}_{i} of $\left(a^{d}-1\right)$ satisfies $N \mathfrak{q}_{i} \equiv 1(\bmod d)$. This is because $\left(\mathcal{O}_{K} / \mathfrak{q}_{i}\right)^{*}$ is a cyclic group of order $N \mathfrak{q}_{i}-1$. Then we have

$$
\sum_{l_{a}(\mathfrak{p})=d} N \mathfrak{p}^{-c}=\sum_{i=1}^{t} N \mathfrak{q}_{i}^{-c} \leq[K: \mathbb{Q}] \sum_{j \leq d \log \left|a^{\prime}\right|}(d j+1)^{-c} \leq[K: \mathbb{Q}] d^{-c}(1-c)^{-1}\left(d \log \left|a^{\prime}\right|\right)^{1-c}
$$

Following the rest of the proof, we obtain that

$$
\log A \leq[K: \mathbb{Q}] \log \left|a^{\prime}\right| \frac{2 \log \log x}{4+\log \log \log x}(\log x)^{1 / 2}+O([K: \mathbb{Q}])
$$

which yields $\log A=o(\log x / \log \log x)$. This completes the proof. Applying Theorem 2.4, we obtain the second part of Theorem 1.1.

We need a principal ideal version of Theorem 2.4 to prove corresponding result on 2-dimensional abelian varieties with CM type.
Theorem 2.5. Let a be an integral element of K which is not a root of unity. There is an $x_{0}(K, a)$ such that if $x \geq x_{0}(K, a)$, then

$$
\sum_{m \leq x, l_{a}((m))=n} 1 \leq x \exp \left(-\left(\frac{1}{2}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right) .
$$

The proof is almost identical, with only difference in the Euler product:

$$
\sum_{m \leq x, l_{a}((m))=n} 1 \leq x^{c} \sum_{l_{a}((m))=n} m^{-c} \leq x^{c} \sum_{p\left|m \Rightarrow l_{a}((p))\right| n} m^{-c}=x^{c} \prod_{l_{a}((p)) \mid n}\left(1-p^{-c}\right)^{-1}=x^{c} A .
$$

As in the proof of $[13$, Theorem 1$]$, we may assume that $x^{[K: \mathbb{Q}]}>n$ otherwise there are no m satisfying $m \leq x$ together with $l_{a}((m))=n$. The Euler product A is treated by

$$
\log A=\sum_{l_{a}((p)) \mid n} p^{-c}+O(1)=\sum_{d \mid n} \sum_{l_{a}((p))=d} p^{-c}+O(1) .
$$

The primes p with $l_{a}((p))=d$ all divide the principal ideal $\left(a^{d}-1\right)$. Then prime p dividing $\left(a^{d}-1\right)$ also divides the integer $N\left(a^{d}-1\right)$. The number of such p is $O\left([K: \mathbb{Q}] \frac{d \log \left|a^{\prime}\right|}{\log (d+1)}\right)$ where a^{\prime} is a conjugate of a with maximal $\left|a^{\prime}\right|$. Let q_{1}, \cdots, q_{t} be all prime divisors of $N\left(a^{d}-1\right)$. Each prime divisor q_{i} of $N\left(a^{d}-1\right)$ satisfies $q_{i} \equiv 1(\bmod d)$. Then we have

$$
\sum_{l_{a}((p))=d} p^{-c}=\sum_{i=1}^{t} q_{i}^{-c} \leq \sum_{j \leq[K: \mathbb{Q}] d \log \left|a^{\prime}\right|}(d j+1)^{-c} \leq d^{-c}(1-c)^{-1}\left([K: \mathbb{Q}] d \log \left|a^{\prime}\right|\right)^{1-c}
$$

Following the rest of the proof, we obtain that

$$
\log A \leq[K: \mathbb{Q}] \log \left|a^{\prime}\right| \frac{2 \log \log x}{4+\log \log \log x}(\log x)^{1 / 2}+O(1)
$$

which yields $\log A=o(\log x / \log \log x)$. This completes the proof.
We may insert an extra factor $R^{w(m)}$ where $w(m)$ is the number of distinct prime divisors of m, yet the upper bound still holds.

Theorem 2.6. Let a be an integral element of K which is not a root of unity. Let $R>0$. There is an $x_{0}(K, a, R)$ such that if $x \geq x_{0}(K, a, R)$, then

$$
\sum_{m \leq x, l_{a}((m))=n} R^{w(m)} \leq x \exp \left(-\left(\frac{1}{2}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right) .
$$

In this one, the Euler product behaves likes R th power of the previous one. In fact,

$$
\begin{aligned}
\sum_{m \leq x, l_{a}((m))=n} R^{w(m)} & \leq x^{c} \sum_{l_{a}((m))=n} R^{w(m)} m^{-c} \leq x^{c} \sum_{p\left|m \Rightarrow l_{a}((p))\right| n} R^{w(m)} m^{-c} \\
& =x^{c} \prod_{l_{a}((p)) \mid n}\left(1+R p^{-c}+R p^{-2 c}+\cdots\right)=x^{c} A .
\end{aligned}
$$

the Euler product A is treated by

$$
\log A=\sum_{l_{a}((p)) \mid n} R p^{-c}+O(R)=\sum_{d \mid n} \sum_{l_{a}((p))=d} R p^{-c}+O(R) .
$$

Following the rest of the proof, we obtain that

$$
\log A \leq R[K: \mathbb{Q}] \log \left|a^{\prime}\right| \frac{2 \log \log x}{4+\log \log \log x}(\log x)^{1 / 2}+O(R),
$$

which yields $\log A=o(\log x / \log \log x)$. This completes the proof.
Corollary 2.3. Let a be an integral element of K which is not a root of unity. Let $R>0$. Then

$$
\sum_{m \leq x} \frac{R^{w(m)}}{l_{a}((m))} \leq x \exp \left(-\left(\frac{1}{2}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right) .
$$

This is an easy consequence of Theorem 2.6. We write

$$
\begin{aligned}
\sum_{m \leq x} \frac{R^{w(m)}}{l_{a}((m))} & =\sum_{\left.n<x^{[K: O]}\right]} \frac{1}{n} \sum_{m \leq x, l_{a}((m))=n} R^{w(m)} \\
& \leq \sum_{\left.n<x^{[K: Q}\right]} \frac{1}{n} x \exp \left(-\left(\frac{1}{2}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right) \\
& =x \exp \left(-\left(\frac{1}{2}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right) .
\end{aligned}
$$

2.2. Abelian Varieties with CM-type. We give necessary definitions and theorems that are required to state Theorem 1.3. For more details, one can refer to [16], also [9]. The Definition 2.1 to Lemma 2.5 are also required and present in [6]. Many of those are stated and proved in detail in [17], [15], also in [18]). We present them for this paper to be self-contained. The endomorphism rings of abelian varieties are far more complex than those of elliptic curves. However, their center (as an algebra) can be described via CM-fields.
Definition 2.1. A CM-field is a totally imaginary quadratic extension of a totally real number field.
The following theorem is [9, p6, Theorem 1.3]:
Theorem 2.7. Let \mathcal{A} be an abelian variety. Then the center K of End $d_{\mathbb{Q}}:=E n d \mathcal{A} \otimes \mathbb{Q}$ is either a totally real field or a CM field.

Furthermore, we have by the following proposition (See [16, p36, Proposition 1]) that the degree of K in above theorem is bounded by $2 \operatorname{dim} \mathcal{A}$.

Proposition 2.1. Let \mathcal{A} be an abelian variety of dimension g and \mathfrak{S} a commutative semi-simple subalgebra of $E n d_{\mathbb{Q}} \mathcal{A}$. Then we have

$$
[\mathfrak{S}: \mathbb{Q}] \leq 2 g
$$

In particular, $K \subset \mathfrak{S}$, which gives $[K: \mathbb{Q}] \leq[\mathfrak{S}: \mathbb{Q}] \leq 2 g$. We are interested in the case that $[K: \mathbb{Q}]=2 g$, and K is a CM field. The following definition generalizes complex multiplication of elliptic curves to abelian varieties. (See [16, p41, Theorem 2], also [9, p72])

Theorem 2.8. Let \mathcal{A} be an abelian variety of dimension g. Suppose that the center of $E n d_{\mathbb{Q}} \mathcal{A}$ is K, and K is a CM field of degree $2 g$ over \mathbb{Q}. We say that \mathcal{A} admits complex multiplication. In this case, there is an ordered set $\Phi=\left\{\phi_{1}, \cdots, \phi_{g}\right\}$ of g distinct isomorphisms of K into \mathbb{C} such that no two of them is conjugate. We call this pair (K, Φ) the CM-type. Furthermore, there exists a lattice \mathfrak{a} in K such that there is an analytic isomorphism $\theta: \mathbb{C}^{g} / \Phi(\mathfrak{a}) \longrightarrow A(\mathbb{C})$. We write (K, Φ, \mathfrak{a}) to indicate that \mathfrak{a} is a lattice in K with respect to θ. In short, we say that \mathcal{A} is of type(CM-type) (K, Φ, \mathfrak{a}) with respect to θ. Under the inclusion $i: K \longrightarrow \operatorname{End}_{\mathbb{Q}} \mathcal{A}$, we have that

$$
\mathcal{O}=\{\tau \in K \mid i(\tau) \in E n d \mathcal{A}\}=\{\tau \in K \mid \tau \mathfrak{a} \subset \mathfrak{a}\}
$$

is an order in K.
This gives rise to the following composition:
Corollary 2.4. Let \mathcal{A} be an abelian variety of dimension g with $C M$-type (K, Φ, \mathfrak{a}) with respect to θ. Then $\theta \circ \Phi$ maps K / \mathfrak{a} to $\mathcal{A}_{\text {tor }}$, i. e.

$$
K / \mathfrak{a} \xrightarrow{\Phi} \mathbb{C}^{g} / \Phi(\mathfrak{a}) \xrightarrow{\theta} \mathcal{A}_{\text {tor }} .
$$

Proof. This is clear from noticing that $\mathfrak{a} \otimes \mathbb{Q}=K$. Also, Φ is \mathbb{Q}-linear, and $\Phi(\mathfrak{a}) \otimes \mathbb{Q}$ is a torsion subgroup of $\mathbb{C}^{g} / \Phi(\mathfrak{a})$.

We define a reflex-type of a given CM-type. (See [16, p59-62])
Let K be a CM-field of degree $2 g, \Phi=\left\{\phi_{1}, \cdots, \phi_{g}\right\}$ a set of g embeddings of K into \mathbb{C} so that (K, Φ) is a CM-type. Let L be a Galois extension of \mathbb{Q} containing K, and G the Galois group of L over \mathbb{Q}. Let ρ be an element of G that induces complex conjugation on K. Let S be the set of all elements of G that induce ϕ_{i} for some $i=1, \cdots, g$.

A CM-type is called primitive if any abelian variety with the type is simple. The following proposition gives a criterion for primitiveness of CM-type. (See [16, p61, Proposition 26])

Proposition 2.2. Let (K, Φ) be a CM-type. Let L, G, ρ, S as above, and H_{1} the subgroup of G corresponding to K. Put

$$
H_{S}=\{\gamma \in G \mid \gamma S=S\} .
$$

Then (K, Φ) is primitive if and only if $H_{1}=H_{S}$.
The following proposition relates a CM-type (K, Φ) and a primitive CM-type $\left(K^{\prime}, \Phi^{\prime}\right)$. (See [16, p62, Proposition 28])

Proposition 2.3. Let L, G, ρ, S as above. Put

$$
S^{\prime}=\left\{\sigma^{-1} \mid \sigma \in S\right\}, \quad H_{S^{\prime}}=\left\{\gamma \in G \mid \gamma S^{\prime}=S^{\prime}\right\}
$$

Let K^{\prime} be the subfield of L corresponding to $H_{S^{\prime}}$, and let $\Phi^{\prime}=\left\{\psi_{1}, \cdots, \psi_{g^{\prime}}\right\}$ be a set of g^{\prime} embeddings of K^{\prime} to \mathbb{C} so that no two of them are conjugate. Then $\left(K^{\prime}, \Phi^{\prime}\right)$ is a primitive CM-type.

We call ($K^{\prime}, \Phi^{\prime}$) the reflex of CM-type (K, Φ). We define a type norm for a given CM-type. The following map is well defined on $K^{\prime \times}$:

$$
N_{\left(K^{\prime}, \Phi^{\prime}\right)}: K^{\prime \times} \longrightarrow K^{\times}, \quad x \mapsto \prod_{\sigma \in \Phi^{\prime}} \sigma(x) .
$$

Let $\mathbb{A}_{K}^{\times}, \mathbb{A}_{K^{\prime}}^{\times}$be the K-ideles and K^{\prime}-ideles respectively. Then this map allows an extension to $N_{\left(K^{\prime}, \Phi^{\prime}\right)}$: $\mathbb{A}_{K^{\prime}}^{\times} \longrightarrow \mathbb{A}_{K}^{\times}$. This extension is called the type norm. It can be seen that $N_{\left(K^{\prime}, \Phi^{\prime}\right)}$ is a continuous homomorphism on $\mathbb{A}_{K^{\prime}}^{\times}$. (See [16, p124]) The field of definition k of an abelian variety \mathcal{A} with CM-type (K, Φ) contains the reflex K^{\prime}. In brief, $k \supset K^{\prime}$. Thus, we can also define the type norm on the field of definition:

$$
N_{\Phi_{k}^{\prime}}=N_{\left(K^{\prime}, \Phi^{\prime}\right)} N_{k \mid K^{\prime}}
$$

where $N_{k \mid K^{\prime}}$ is the standard norm map of ideles. Note that if $g=1$ (elliptic curves) then $K=K^{\prime}$.
An analogue of $[10, \mathrm{p} 162$, Lemma 4] can be obtained from applying the Main Theorem of Complex Multiplication (See [9, Theorem 1.1, p84]). The idea of the proof is the same as in [10, p 162, Lemma 4], but we need a modification due to type norm factor in the Main Theorem of Complex Multiplication.

Lemma 2.3. Let $\mathcal{A},(K, \Phi),\left(K^{\prime}, \Phi^{\prime}\right), k$ be the same notations as before. Let $m \geq 2$ be an integer. Then there exists a nonzero rational integer f such that

$$
k(\mathcal{A}[m]) \subset k_{(m f)},
$$

where $k_{(m f)}$ is the ray class field corresponding to the principal ideal $(m f) \subset k$.
For the proof of this, we refer to [6, Lemma 2.1].
Let K be a number field of degree $n=r_{1}+2 r_{2}$ with ring of integers \mathcal{O}_{K} and r_{1} the number of distinct real embeddings of K, and let \mathfrak{m} be an integral ideal of K. Define a \mathfrak{m}-ideal class group by an abelian group of equivalence classes of ideals in the following relation:

$$
\mathfrak{a} \sim \mathfrak{b}(\bmod \mathfrak{m})
$$

if $\mathfrak{a b}{ }^{-1}=(\alpha), \alpha \in K, \alpha \equiv 1(\bmod \mathfrak{m})$, and α is totally positive. Let $\alpha, \beta \in K$. Denote by $\alpha \equiv \beta\left(\bmod ^{*} \mathfrak{m}\right)$ if $v_{\mathfrak{p}}(\mathfrak{m}) \leq v_{\mathfrak{p}}(\alpha-\beta)$ for all primes \mathfrak{p} and $\alpha \beta^{-1}$ is totally positive. Then we can rewrite the equivalence relation \sim by

$$
\mathfrak{a b}^{-1} \in P_{K}^{\mathfrak{m}}=\left\{(\alpha): \alpha \equiv 1\left(\bmod ^{*} \mathfrak{m}\right)\right\} .
$$

The \mathfrak{m}-ideal class group coincides with our definition $C_{\mathfrak{m}}(K)=J_{K}^{\mathfrak{m}} / P_{K}^{\mathfrak{m}}$ in the previous chapter. Denote by $h(\mathfrak{m})$ the cardinality of $J_{K}^{\mathfrak{m}} / P_{K}^{\mathfrak{m}}$, and h by the class number of K. We have a formula that relates $h(\mathfrak{m})$ and the class number h of K. This follows from an exact sequence:

$$
U(K) \longrightarrow\left(\mathcal{O}_{K} / \mathfrak{m} \mathcal{O}_{K}\right)^{\times} \oplus\{ \pm 1\}^{r_{1}} \longrightarrow C_{\mathfrak{m}}(K) \longrightarrow C(K) \longrightarrow 1
$$

Denote by $T(\mathfrak{m})$ the cardinality of the image of the unit group $U(K)$ in $\left(\mathcal{O}_{K} / \mathfrak{m} \mathcal{O}_{K}\right)^{\times} \oplus\{ \pm 1\}^{r_{1}}$. Then we have

$$
h(\mathfrak{m})=\frac{2^{r_{1}} h \varphi(\mathfrak{m})}{T(\mathfrak{m})}
$$

where $\varphi(\mathfrak{m})=\left|\left(\mathcal{O}_{K} / \mathfrak{m} \mathcal{O}_{K}\right)^{\times}\right|$.
The following lemma is a direct corollary of Lemma 2.3:
Lemma 2.4. Let $\mathcal{A},(K, \Phi),\left(K^{\prime}, \Phi^{\prime}\right), k$ be the same notations as before. Suppose also that $\mathfrak{p} \subset k$ is a prime of good reduction for \mathcal{A}, and $\mathfrak{p} \nmid m$. Let f be the nonzero integer as in Lemma 2.3. Given $m \geq 1$, there are $t(m)$ ideal classes modulo $(m f) \subset k$ such that

$$
\mathfrak{p} \text { splits completely in } k(\mathcal{A}[m]) \text { if and only if } \mathfrak{p} \sim \mathfrak{a}_{1}, \cdots, \mathfrak{p} \sim \mathfrak{a}_{t(m)} .
$$

Furthermore, $t(m)$ satisfies the following identity by class field theory,

$$
\frac{t(m)}{h((m f))}=\frac{1}{[k(\mathcal{A}[m]): k]} .
$$

By Lemma 2.5 below, there is an absolute positive constant R depending only on \mathcal{A} such that

$$
t(m)=\frac{h((m f))}{[k(\mathcal{A}[m]): k]} \leq \frac{m^{2 l-\nu}}{T((m f))} R^{w(m)} .
$$

The last inequality can be obtained from applying the following theorem on extension degree of division fields along with a formula for $h((m f))$. (See [14, Theorem 1.1], also [12])

Lemma 2.5. Let \mathcal{A} be an abelian variety of $C M$ type (K, Φ, \mathfrak{a}) of dimension g defined over a number field k. Then for some $c_{1}, c_{2}>0, n_{m}=[k(\mathcal{A}[m]): k]$ satisfies

$$
m^{\nu} c_{1}^{w(m)} \leq n_{m} \leq m^{\nu} c_{2}^{w(m)}
$$

where $w(m)$ is the number of distinct prime factors of $m, \nu=\operatorname{Rank}(\Phi, K)$, and $2+\log _{2} g \leq \nu \leq g+1$ if \mathcal{A} is absolutely simple. Since the reflex type ($\Phi^{\prime}, K^{\prime}$) is always simple and $\operatorname{Rank}(\Phi, K)=\operatorname{Rank}\left(\Phi^{\prime}, K^{\prime}\right)$, we also have that $2+\log _{2} g^{\prime} \leq \nu \leq g^{\prime}+1$ if $\left[K^{\prime}: \mathbb{Q}\right]=g^{\prime}$. Thus, we have

$$
\max \left(2+\log _{2} g, 2+\log _{2} g^{\prime}\right) \leq \nu \leq \min \left(g+1, g^{\prime}+1\right)
$$

On the assumptions for Theorem $1.2, g=2$ gives the only choice for $\nu=g+1=3$. Then Lemma 2.4 gives

$$
t(m) \leq \frac{m}{T((m f))} R^{w(m)} .
$$

Taking the sum over $m \leq \sqrt{x}$ above, we have by Corollary 2.3 in section 2.1,

$$
\sum_{m \leq \sqrt{x}} t(m)<_{K} \sqrt{x} \sum_{m \leq \sqrt{x}} \frac{R^{w(m)}}{T((m f))}<_{K} \sqrt{x} \sqrt{x} \exp \left(-\left(\frac{1}{4}+o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right) .
$$

This completes the proof of Theorem 1.2.

References

[1] N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors $>y$, Nederl. Akad. Wetensch. Proc. Ser. A $69=$ Indag. Math. 28 (1966), pp. 239-247.
[2] E. Fouvry, Theoreme de Brun-Titchmarsh; application au theoreme de Fermat, Invent. Math., 79, (1985) pp. 383-407
[3] T. Freiberg, P. Pollack, The average of the first invariant factor for reductions of CM elliptic curves mod p, Int. Math. Res. Notices, to appear
[4] A. Granville, Smooth numbers: computational number theory and beyond, Algorithmic Number Theory, MSRI Publications, Volume 44, (2008)
[5] A. J. Hildebrand, On the Number of Positive Integers $\leq x$ and Free of Prime Factors $>y$, Journal of Number Theory 22, (1986) pp. 289-307
[6] S. Kim, Average of the First Invariant Factor of the Reductions of Abelian Varieties of CM Type, accepted for publication.
[7] P. Kurlberg, Z. Rudnick, On Quantum Ergodicity for Linear Maps of the Torus, Comm. Math. Phys., 222(1):201-227, 2001
[8] P. Kurlberg, C. Pomerance, On the period of linear congruential and power generators, Acta Arith. 119 (2005), pp. 305-335.
[9] S. Lang, Complex Multiplication, Springer-Verlag, 1983
[10] M. R. Murty, On Artin's Conjecture, Journal of Number Theory, Vol 16, no.2, April 1983
[11] H. Montgomery, R. Vaughan, Multiplicative Number Theory I, Classical Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press 2007.
[12] J. Neukirch, Algebraic Number Theory, Springer 1999
[13] C. Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), pp. 537-593.
[14] K. Ribet, Division Fields of Abelian Varieties with Complex Multiplication, Memoires de la S. M. F. 2e serie, tome 2 (1980), pp. 75-94.
[15] K. Rubin, Elliptic Curves with Complex Multiplication and the Conjecture of Birch and Swinnerton-Dyer, available at http://wstein.org/swc/aws/notes/files/99RubinCM.pdf
[16] G. Shimura, Abelian Varieties with Complex Multiplications and Modular Functions, Princeton University Press, 1998
[17] J. Silverman, The Arithmetic of Elliptic Curves, 2nd Edition, Graduate Texts in Mathematics 106, Springer
[18] J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Springer
[19] J. Zelinsky, Upper bounds for the number of primitive ray class characters with conductor below a given bound, arXiv preprint arXiv:http://arxiv.org/abs/1307.2319

