AVERAGE RECIPROCALS OF THE ORDER OF a MODULO n

KIM, SUNGJIN

ABSTRACT. Let a > 1 be an integer. Denote by $l_a(n)$ the multiplicative order of a modulo integers n. We prove that

$$\sum_{\leq x, (n,a)=1} \frac{1}{l_a(n)} = O_a\left(x \exp\left(-\left(\frac{1}{2} + o(1)\right) \log x \frac{\log\log\log x}{\log\log x}\right)\right),$$

which is an improvement over [19, Theorem 5].

n

Further, we obtain several applications toward number fields and 2-dimensional abelian varieties of CM-type.

1. INTRODUCTION

Define $l_a(n)$ by the multiplicative order of a modulo n. In [7], Kurlberg and Rudnick showed that there exist a $\delta > 0$ such that $l_a(n) \gg \sqrt{n} \exp(\log n)^{\delta}$ for all but o(x) integers $n \leq x$. In [8], Kurlberg and Pomerance obtained the following result by applying Fouvry's result (see [2]). For some $\gamma > 0$, $l_a(n) \gg n^{1/2+\gamma}$ for positive proportion of $n \leq x$.

On the other hand, Zelinsky [19] proved that

$$\sum_{a \le x, (n,a)=1} \frac{\varphi(n)}{l_a(n)} = O_a\left(\frac{x^2}{\log^{\alpha} x}\right)$$

for any $0 < \alpha < 3$. Indeed, this result can be interpreted as

$$\sum_{n \le x, (n,a)=1} \frac{1}{l_a(n)} = O_a\left(\frac{x}{\log^{\alpha} x}\right)$$

for any $0 < \alpha < 3$. Furthermore, he was able to generalize to number fields. Let K be a number field, and assume that U_K its group of units is infinite. Let R_K be the ring of integers in K. For integral ideal I, denote by NI the norm of I, and $\varphi(I)$ the Euler's totient function of I, which is defined by:

$$\varphi(I) = NI \prod_{\mathfrak{p}|I} \left(1 - \frac{1}{N\mathfrak{p}}\right)$$

Denote by $U_K(I)$ the subgroup of U_K formed by elements which are 1 modulo I. He obtained that

$$\sum_{NI \le x} \frac{\varphi(I)}{[U_K : U_K(I)]} = O_K\left(\frac{x^2}{\log^{\alpha} x}\right)$$

This also can be interpreted as

$$\sum_{NI \le x} \frac{1}{[U_K : U_K(I)]} = O_K\left(\frac{x}{\log^{\alpha} x}\right).$$

In the author's work [6, Theorem 2.3], it is shown that

$$[U_K : U_K(I)] \gg (\log x)^{\frac{1}{2}(\log x)^{2/5}}$$

for all but $O(x \exp(-\frac{2}{5}(\log x)^{3/5}))$ integal ideals $NI \leq x$. This implies that

$$\sum_{NI \le x} \frac{1}{[U_K : U_K(I)]} = O_K \left(x \exp\left(-\frac{2}{5} (\log x)^{2/5}\right) \right).$$

The same idea as in [6, Theorem 2.3] also applies to

n

$$\sum_{\leq x, (n,a)=1} \frac{1}{l_a(n)} = O_a\left(x \exp\left(-\frac{2}{5} (\log x)^{2/5}\right)\right).$$

We show that the same idea in [6, Theorem 2.3] further leads to

n

$$\sum_{NI \le x} \frac{1}{[U_K : U_K(I)]} = O_K \left(x \exp\left(-c\sqrt{\log x \log \log x} \right) \right),$$

also

$$\sum_{n \le x, (n,a)=1} \frac{1}{l_a(n)} = O_a\left(x \exp\left(-c\sqrt{\log x \log \log x}\right)\right)$$

for some positive constant c. Adopting an idea from Pomerance [13], we further improve these:

Theorem 1.1. Let $l_a(n)$ be the multiplicative order of a modulo n. Then

$$\sum_{\leq x, (n,a)=1} \frac{1}{l_a(n)} = O_a\left(x \exp\left(-\left(\frac{1}{2} + o(1)\right) \log x \frac{\log\log\log x}{\log\log x}\right)\right).$$

Furthermore, let K be a number field, and assume that U_K its group of units is infinite. For an integral ideal I, denote by $U_K(I)$ the subgroup of U_K formed by elements which are 1 modulo I. Then

$$\sum_{NI \le x} \frac{1}{[U_K : U_K(I)]} = O_K\left(x \exp\left(-\left(\frac{1}{2} + o(1)\right)\log x \frac{\log\log\log x}{\log\log x}\right)\right).$$

It is possible to apply this to improve on [6, Theorem 1.8]. Let \mathcal{A} be a g-dimensional $(g \ge 2)$ abelian variety defined over a number field k. Let \mathfrak{p} be a prime in k such that \mathcal{A} has a good reduction at \mathfrak{p} , and denote by $\mathcal{A}(\mathbb{F}_{\mathfrak{p}})$ the reduction of \mathcal{A} modulo \mathfrak{p} . It is known that $\mathcal{A}(\mathbb{F}_{\mathfrak{p}})$ has an abelian group structure

$$\mathcal{A}(\mathbb{F}_{\mathfrak{p}})\simeq \mathbb{Z}/d_{1}(\mathfrak{p})\mathbb{Z}\oplus \cdots \oplus \mathbb{Z}/d_{g}(\mathfrak{p})\mathbb{Z}\oplus \mathbb{Z}/e_{1}(\mathfrak{p})\mathbb{Z}\oplus \cdots \oplus \mathbb{Z}/e_{g}(\mathfrak{p})\mathbb{Z}$$

where $d_i(\mathfrak{p})|d_{i+1}(\mathfrak{p}), d_g(\mathfrak{p})|e_1(\mathfrak{p})$, and $e_i(\mathfrak{p})|e_{i+1}(\mathfrak{p})$ for $1 \leq i < g$. For the definition of t(m), we refer to Lemma 2.3.

Theorem 1.2. Let \mathcal{A} be an absolutely simple abelian variety of dimension 2 defined over a degree 4 CM-field with CM-type (K, Φ, \mathfrak{a}) . Suppose that the reflex type $(K', \Phi', \mathfrak{a}')$ satisfies K = K'. Then we have

$$\sum_{m < \sqrt{x}} t(m) = O_K \left(x \exp\left(-\left(\frac{1}{4} + o(1)\right) \log x \frac{\log \log \log x}{\log \log x} \right) \right)$$

The significance in this theorem is that this opens up a possibility of proving a special case g = 2 of the author's Conjecture 1.1 in [6] unconditionally. If we are able to prove

$$\pi_{\mathcal{A}}(x; (mf), \mathfrak{a}_i) \ll_K (\log x)^B$$

for some positive absolute constant B in the case N(mf) > x/2, then this would probably help in bounding the number of prime ideals with $N\mathfrak{p} \leq x$ in each t(m) residue classes \mathfrak{a}_i modulo (mf). Then the following conjecture (see [6, Conjecture 1.1]) would follow by counting the number of prime ideals splitting completely in the division field $k(\mathcal{A}[m])$ by considering residue classes (see also Lemma 2.3):

Conjecture 1.1. Let \mathcal{A} be an absolutely simple abelian variety of dimension 2 defined over a degree 4 CM-field with CM-type (K, Φ, \mathfrak{a}) . Suppose that the reflex type $(K', \Phi', \mathfrak{a}')$ satisfies K = K'. Then we have

$$\sum_{N\mathfrak{p}\leq x} d_1(\mathfrak{p}) = C_{\mathcal{A}} Li(x) + O_{\mathcal{A},B}\left(\frac{x}{\log^B x}\right),$$

where

$$C_{\mathcal{A}} = \sum_{m=1}^{\infty} \frac{\varphi(m)}{[k(\mathcal{A}[m]):k]}$$

In fact, this conjecture was made in an effort to generalize a theorem by Freiberg and Pollack [3, Theorem 1.1] to abelian varieties.

2. Backgrounds and Proofs

2.1. Smooth Numbers. Let $\psi(x, y)$ be the number of positive integers $n \leq x$ whose prime divisors $p \leq y$. For any U > 0, it is well known that

$$\psi(x, x^{1/u}) = x\rho(u) + O\left(\frac{x}{\log x}\right)$$

uniformly for $1 \le u \le U$. The function $\rho(u)$ is called the Dickman function, and it satisfies

$$\rho(u) = 1 \quad \text{for } 0 < u \le 1,$$

$$-u\rho'(u) = \rho(u-1) \quad \text{for } u > 1.$$

This function also satisfies the following asymptotic formula (see [1]):

$$\rho(u) = \exp\left(-u\left(\log u + \log\log u - 1 + \frac{\log\log u}{\log u} - \frac{1}{\log u} + O\left(\frac{(\log\log u)^2}{(\log u)^2}\right)\right)\right).$$

From the upper bound of de Bruijn [1], and lower bound of Hildebrand [5], we have

Theorem 2.1. Let $\epsilon > 0$, we have

$$\psi(x, x^{1/u}) = x\rho(u) \exp\left(O_{\epsilon}(u \exp(-(\log u)^{3/5-\epsilon}))\right)$$

uniformly for $1 \le u \le (1 - \epsilon) \log x / \log \log x$.

For a fixed positive c, let $u = \frac{\sqrt{\log x}}{c\sqrt{\log \log x}}$. Then we have

Corollary 2.1. For $x \ge x_0(c)$, we have

$$\psi\left(x, \exp\left(c\sqrt{\log x \log\log x}\right)\right) = x \exp\left(\left(-\frac{1}{2c} + o(1)\right)\sqrt{\log x \log\log x}\right)$$

For a given number field K, define $\psi_K(x, y)$ to be the number of integral ideals I with $NI \leq x$ such that $N\mathfrak{p} \leq y$ for any prime ideal $\mathfrak{p}|I$. Then the above theorem and corollary have their analogue (see [4, Section 1.3]):

Theorem 2.2. Let $\epsilon > 0$, we have

$$\psi_K(x, x^{1/u}) = \psi_K(x, x)\rho(u) \exp\left(O_\epsilon(u \exp(-(\log u)^{3/5 - \epsilon}))\right)$$

uniformly for $1 \le u \le (1 - \epsilon) \log x / \log \log x$.

As before, for a fixed positive c, let $u = \frac{\sqrt{\log x}}{c\sqrt{\log \log x}}$. Then we have

Corollary 2.2. For $x \ge x_0(c)$, we have

$$\psi_K\left(x, \exp\left(c\sqrt{\log x \log\log x}\right)\right) = \psi_K(x, x) \exp\left(\left(-\frac{1}{2c} + o(1)\right)\sqrt{\log x \log\log x}\right).$$

Let a > 1 be an integer. For some z > 0, it is clear that $l_a(n) < z$ implies $n | \prod_{i < z} (a^i - 1)$. Since the number of prime factors of $\prod_{i < z} (a^i - 1)$ is $O_a(z^2/\log z)$, the number of integers $n \le x$ such that $l_a(n) < z$ is $O_a(\psi(x, c_a z^2))$. This is due to the fact that n is consisted of prime divisors of $\prod_{i < z} (a^i - 1)$. Therefore, by taking $z = \exp(c\sqrt{\log x \log \log x})$, we establish the following:

Lemma 2.1. Let a > 1 be an integer. Then there is $c_a > 0$ such that

$$l_a(n) \ge \exp\left(c_a\sqrt{\log x \log\log x}\right)$$

for all but $O_a\left(x \exp\left(-c_a \sqrt{\log x \log \log x}\right)\right)$ integers $n \le x$.

Using the lower bound $\exp\left(c_a\sqrt{\log x \log \log x}\right)$ for most $n \leq x$, and the trivial lower bound 1 for the exceptional set of $n \leq x$, it follows that

$$\sum_{n \le x, (n,a)=1} \frac{1}{l_a(n)} = O_a\left(x \exp\left(-c_a \sqrt{\log x \log \log x}\right)\right)$$

for some positive constant c_a .

m

fo

Furthermore, let K be a number field, and assume that $U_K = (\mathcal{O}_K)^*$ its group of units is infinite. For integral ideal I, denote by NI the norm of I. Denote by $U_K(I)$ the subgroup of U_K formed by elements which are 1 modulo I. Let $a \in U_K$ be a unit of infinite order. We use the notation $l_a(I)$ for the order of a modulo I. Then we have

$$[U_K: U_K(I)] \ge l_a(I).$$

The same idea as above applies, and we obtain for some $c_K > 0$,

n

$$\sum_{VI \le x} \frac{1}{[U_K : U_K(I)]} = O_K \left(x \exp\left(-c_K \sqrt{\log x \log \log x}\right) \right),$$

To prove Theorem 1.1, we adopt an idea of Pomerance [13, Theorem 1]:

Theorem 2.3. Let a > 1 be an integer. There is an $x_0(a)$ such that if $x \ge x_0(a)$, then

$$\sum_{n \le x, l_a(m)=n} 1 \le x \exp\left(-\left(\frac{1}{2} + o(1)\right) \log x \frac{\log\log\log x}{\log\log x}\right).$$

We may assume that n < x. Similarly as in [1, Section 3], Pomerance applies Rankin's method. Then for any c > 0,

$$\sum_{\leq x, l_a(m)=n} 1 \leq x^c \sum_{l_a(m)=n} m^{-c} \leq x^c \sum_{p|m \Rightarrow l_a(p)|n} m^{-c} = x^c \prod_{l_a(p)|n} (1-p^{-c})^{-1} = x^c A.$$

Then the optimal choice for c is $c = 1 - (4 + \log \log \log x)/(2 \log \log x)$ with a requirement $\log A = o(\log x/\log \log x)$. Here, A is the Euler product

$$\prod_{a(p)|n} (1 - p^{-c})^{-1}$$

which depends on both a and n. Taking the sum of the LHS of Theorem 2.3 for $n < z = \exp\left(\frac{1}{4}\log x \frac{\log\log\log x}{\log\log x}\right)$, we obtain a strengthened version of Lemma 2.1.

Lemma 2.2. Let a > 1 be an integer. Then there is $c_a > 0$ such that

$$l_a(n) \ge \exp\left(\frac{1}{4}\log x \frac{\log\log\log x}{\log\log x}\right)$$

r all but $O_a\left(x \exp\left(-\left(\frac{1}{4} + o(1)\right)\log x \frac{\log\log\log x}{\log\log x}\right)\right)$ integers $n \le x$.

However, we do not use the lemma to prove Theorem 1.2. Instead, observe the following:

$$\sum_{m \le x} \frac{1}{l_a(m)} = \sum_{n < x} \frac{1}{n} \sum_{m \le x, l_a(m) = n} 1.$$

Applying Theorem 2.3 directly, we obtain that

$$\sum_{n < x} \frac{1}{n} \sum_{m \le x, l_a(m) = n} 1 \le \sum_{n < x} \frac{1}{n} x \exp\left(-\left(\frac{1}{2} + o(1)\right) \log x \frac{\log\log\log x}{\log\log x}\right)$$
$$= O_a\left(x \exp\left(-\left(\frac{1}{2} + o(1)\right) \log x \frac{\log\log\log x}{\log\log x}\right)\right).$$

This proves the first part of Theorem 1.1. The statement for the number fields follows from a modified version of Theorem 2.3.

Theorem 2.4. Let a be an integral element of K which is not a root of unity. There is an $x_0(K, a)$ such that if $x \ge x_0(K, a)$, then

$$\sum_{NI \le x, l_a(I)=n} 1 \le x \exp\left(-\left(\frac{1}{2} + o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right).$$

The proof is almost identical, with only difference in the Euler product:

$$\sum_{NI \le x, l_a(I)=n} 1 \le x^c \sum_{l_a(I)=n} NI^{-c} \le x^c \sum_{\mathfrak{p}|I \Rightarrow l_a(\mathfrak{p})|n} NI^{-c} = x^c \prod_{l_a(\mathfrak{p})|n} (1 - N\mathfrak{p}^{-c})^{-1} = x^c A.$$

As in the proof of [13, Theorem 1], we may assume that x > n otherwise there are no I satisfying $NI \le x$ together with $l_a(I) = n$. The Euler product A is treated by

$$\log A = \sum_{l_a(\mathfrak{p})|n} N\mathfrak{p}^{-c} + O([K:\mathbb{Q}]) = \sum_{d|n} \sum_{l_a(\mathfrak{p})=d} N\mathfrak{p}^{-c} + O([K:\mathbb{Q}]).$$

The prime ideals \mathfrak{p} with $l_a(\mathfrak{p}) = d$ all divide the principal ideal $(a^d - 1)$. Then the number of prime ideals \mathfrak{p} dividing $(a^d - 1)$ is $O\left([K:\mathbb{Q}]\frac{d\log|a'|}{\log(d+1)}\right)$ where a' is a conjugate of a with maximal |a'|. Let $\mathfrak{q}_1, \dots, \mathfrak{q}_t$ be all prime divisors of $(a^d - 1)$. Note that for a given norm, there are at most $[K:\mathbb{Q}]$ prime ideals of the same norm. Each prime divisor \mathfrak{q}_i of $(a^d - 1)$ satisfies $N\mathfrak{q}_i \equiv 1 \pmod{d}$. This is because $(\mathcal{O}_K/\mathfrak{q}_i)^*$ is a cyclic group of order $N\mathfrak{q}_i - 1$. Then we have

$$\sum_{l_a(\mathfrak{p})=d} N\mathfrak{p}^{-c} = \sum_{i=1}^{c} N\mathfrak{q}_i^{-c} \le [K:\mathbb{Q}] \sum_{j \le d \log |a'|} (dj+1)^{-c} \le [K:\mathbb{Q}] d^{-c} (1-c)^{-1} (d \log |a'|)^{1-c}$$

Following the rest of the proof, we obtain that

$$\log A \le [K:\mathbb{Q}] \log |a'| \frac{2\log\log x}{4 + \log\log\log x} (\log x)^{1/2} + O([K:\mathbb{Q}]),$$

which yields $\log A = o(\log x / \log \log x)$. This completes the proof. Applying Theorem 2.4, we obtain the second part of Theorem 1.1.

We need a principal ideal version of Theorem 2.4 to prove corresponding result on 2-dimensional abelian varieties with CM type.

Theorem 2.5. Let a be an integral element of K which is not a root of unity. There is an $x_0(K, a)$ such that if $x \ge x_0(K, a)$, then

$$\sum_{n \le x, l_a((m))=n} 1 \le x \exp\left(-\left(\frac{1}{2} + o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right).$$

The proof is almost identical, with only difference in the Euler product:

$$\sum_{m \le x, l_a((m))=n} 1 \le x^c \sum_{l_a((m))=n} m^{-c} \le x^c \sum_{p|m \Rightarrow l_a((p))|n} m^{-c} = x^c \prod_{l_a((p))|n} (1-p^{-c})^{-1} = x^c A.$$

As in the proof of [13, Theorem 1], we may assume that $x^{[K:\mathbb{Q}]} > n$ otherwise there are no *m* satisfying $m \leq x$ together with $l_a((m)) = n$. The Euler product *A* is treated by

$$\log A = \sum_{l_a((p))|n} p^{-c} + O(1) = \sum_{d|n} \sum_{l_a((p))=d} p^{-c} + O(1)$$

The primes p with $l_a((p)) = d$ all divide the principal ideal $(a^d - 1)$. Then prime p dividing $(a^d - 1)$ also divides the integer $N(a^d - 1)$. The number of such p is $O\left([K:\mathbb{Q}]\frac{d\log|a'|}{\log(d+1)}\right)$ where a' is a conjugate of a with maximal |a'|. Let q_1, \dots, q_t be all prime divisors of $N(a^d - 1)$. Each prime divisor q_i of $N(a^d - 1)$ satisfies $q_i \equiv 1 \pmod{d}$. Then we have

$$\sum_{l_a((p))=d} p^{-c} = \sum_{i=1}^{l} q_i^{-c} \le \sum_{j \le [K:\mathbb{Q}]d \log |a'|} (dj+1)^{-c} \le d^{-c}(1-c)^{-1}([K:\mathbb{Q}]d \log |a'|)^{1-c}$$

Following the rest of the proof, we obtain that

$$\log A \le [K:\mathbb{Q}] \log |a'| \frac{2\log \log x}{4 + \log \log \log x} (\log x)^{1/2} + O(1),$$

which yields $\log A = o(\log x / \log \log x)$. This completes the proof.

We may insert an extra factor $R^{w(m)}$ where w(m) is the number of distinct prime divisors of m, yet the upper bound still holds.

Theorem 2.6. Let a be an integral element of K which is not a root of unity. Let R > 0. There is an $x_0(K, a, R)$ such that if $x \ge x_0(K, a, R)$, then

$$\sum_{n \le x, l_a((m))=n} R^{w(m)} \le x \exp\left(-\left(\frac{1}{2} + o(1)\right) \log x \frac{\log\log\log x}{\log\log x}\right)$$

In this one, the Euler product behaves likes Rth power of the previous one. In fact,

$$\sum_{m \le x, l_a((m))=n} R^{w(m)} \le x^c \sum_{l_a((m))=n} R^{w(m)} m^{-c} \le x^c \sum_{p \mid m \Rightarrow l_a((p)) \mid n} R^{w(m)} m^{-c}$$
$$= x^c \prod_{l_a((p)) \mid n} (1 + Rp^{-c} + Rp^{-2c} + \cdots) = x^c A.$$

the Euler product A is treated by

$$\log A = \sum_{l_a((p))|n} Rp^{-c} + O(R) = \sum_{d|n} \sum_{l_a((p))=d} Rp^{-c} + O(R).$$

Following the rest of the proof, we obtain that

$$\log A \le R[K:\mathbb{Q}] \log |a'| \frac{2\log\log x}{4 + \log\log\log x} (\log x)^{1/2} + O(R),$$

which yields $\log A = o(\log x / \log \log x)$. This completes the proof.

Corollary 2.3. Let a be an integral element of K which is not a root of unity. Let R > 0. Then

$$\sum_{m \le x} \frac{R^{w(m)}}{l_a((m))} \le x \exp\left(-\left(\frac{1}{2} + o(1)\right) \log x \frac{\log\log\log x}{\log\log x}\right).$$

This is an easy consequence of Theorem 2.6. We write

$$\begin{split} \sum_{m \le x} \frac{R^{w(m)}}{l_a((m))} &= \sum_{n < x^{[K:\mathbb{Q}]}} \frac{1}{n} \sum_{m \le x, l_a((m)) = n} R^{w(m)} \\ &\le \sum_{n < x^{[K:\mathbb{Q}]}} \frac{1}{n} x \exp\left(-\left(\frac{1}{2} + o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right) \\ &= x \exp\left(-\left(\frac{1}{2} + o(1)\right) \log x \frac{\log \log \log x}{\log \log x}\right). \end{split}$$

2.2. Abelian Varieties with CM-type. We give necessary definitions and theorems that are required to state Theorem 1.3. For more details, one can refer to [16], also [9]. The Definition 2.1 to Lemma 2.5 are also required and present in [6]. Many of those are stated and proved in detail in [17], [15], also in [18]). We present them for this paper to be self-contained. The endomorphism rings of abelian varieties are far more complex than those of elliptic curves. However, their center (as an algebra) can be described via CM-fields.

Definition 2.1. A CM-field is a totally imaginary quadratic extension of a totally real number field.

The following theorem is [9, p6, Theorem 1.3]:

Theorem 2.7. Let \mathcal{A} be an abelian variety. Then the center K of $End_{\mathbb{Q}}\mathcal{A} := End\mathcal{A} \otimes \mathbb{Q}$ is either a totally real field or a CM field.

Furthermore, we have by the following proposition (See [16, p36, Proposition 1]) that the degree of K in above theorem is bounded by $2\dim A$.

Proposition 2.1. Let \mathcal{A} be an abelian variety of dimension g and \mathfrak{S} a commutative semi-simple subalgebra of $End_{\mathbb{Q}}\mathcal{A}$. Then we have

$$[\mathfrak{S}:\mathbb{Q}]\leq 2g.$$

In particular, $K \subset \mathfrak{S}$, which gives $[K : \mathbb{Q}] \leq [\mathfrak{S} : \mathbb{Q}] \leq 2g$. We are interested in the case that $[K : \mathbb{Q}] = 2g$, and K is a CM field. The following definition generalizes complex multiplication of elliptic curves to abelian varieties. (See [16, p41, Theorem 2], also [9, p72])

Theorem 2.8. Let \mathcal{A} be an abelian variety of dimension g. Suppose that the center of $End_{\mathbb{Q}}\mathcal{A}$ is K, and K is a CM field of degree 2g over \mathbb{Q} . We say that \mathcal{A} admits complex multiplication. In this case, there is an ordered set $\Phi = \{\phi_1, \dots, \phi_g\}$ of g distinct isomorphisms of K into \mathbb{C} such that no two of them is conjugate. We call this pair (K, Φ) the CM-type. Furthermore, there exists a lattice \mathfrak{a} in K such that there is an analytic isomorphism $\theta : \mathbb{C}^g/\Phi(\mathfrak{a}) \longrightarrow A(\mathbb{C})$. We write (K, Φ, \mathfrak{a}) to indicate that \mathfrak{a} is a lattice in K with respect to θ . In short, we say that \mathcal{A} is of type(CM-type) (K, Φ, \mathfrak{a}) with respect to θ . Under the inclusion $i : K \longrightarrow End_{\mathbb{Q}}\mathcal{A}$, we have that

$$\mathcal{O} = \{\tau \in K | i(\tau) \in End\mathcal{A}\} = \{\tau \in K | \tau \mathfrak{a} \subset \mathfrak{a}\}$$

is an order in K.

This gives rise to the following composition:

Corollary 2.4. Let \mathcal{A} be an abelian variety of dimension g with CM-type (K, Φ, \mathfrak{a}) with respect to θ . Then $\theta \circ \Phi$ maps K/\mathfrak{a} to \mathcal{A}_{tor} , *i. e.*

$$K/\mathfrak{a} \xrightarrow{\Phi} \mathbb{C}^g/\Phi(\mathfrak{a}) \xrightarrow{\theta} \mathcal{A}_{tor}.$$

Proof. This is clear from noticing that $\mathfrak{a} \otimes \mathbb{Q} = K$. Also, Φ is \mathbb{Q} -linear, and $\Phi(\mathfrak{a}) \otimes \mathbb{Q}$ is a torsion subgroup of $\mathbb{C}^g/\Phi(\mathfrak{a})$.

We define a reflex-type of a given CM-type. (See [16, p59-62])

Let K be a CM-field of degree 2g, $\Phi = \{\phi_1, \dots, \phi_g\}$ a set of g embeddings of K into \mathbb{C} so that (K, Φ) is a CM-type. Let L be a Galois extension of \mathbb{Q} containing K, and G the Galois group of L over \mathbb{Q} . Let ρ be an element of G that induces complex conjugation on K. Let S be the set of all elements of G that induce ϕ_i for some $i = 1, \dots, g$.

A CM-type is called primitive if any abelian variety with the type is simple. The following proposition gives a criterion for primitiveness of CM-type. (See [16, p61, Proposition 26])

Proposition 2.2. Let (K, Φ) be a CM-type. Let L, G, ρ , S as above, and H_1 the subgroup of G corresponding to K. Put

$$H_S = \{ \gamma \in G | \gamma S = S \}.$$

Then (K, Φ) is primitive if and only if $H_1 = H_S$.

The following proposition relates a CM-type (K, Φ) and a primitive CM-type (K', Φ') . (See [16, p62, Proposition 28])

Proposition 2.3. Let L, G, ρ , S as above. Put

$$S' = \{ \sigma^{-1} | \sigma \in S \}, \quad H_{S'} = \{ \gamma \in G | \gamma S' = S' \}.$$

Let K' be the subfield of L corresponding to $H_{S'}$, and let $\Phi' = \{\psi_1, \dots, \psi_{g'}\}$ be a set of g' embeddings of K' to \mathbb{C} so that no two of them are conjugate. Then (K', Φ') is a primitive CM-type.

We call (K', Φ') the reflex of CM-type (K, Φ) . We define a type norm for a given CM-type. The following map is well defined on K'^{\times} :

$$N_{(K',\Phi')}: K'^{\times} \longrightarrow K^{\times}, \quad x \mapsto \prod_{\sigma \in \Phi'} \sigma(x)$$

Let \mathbb{A}_{K}^{\times} , $\mathbb{A}_{K'}^{\times}$ be the *K*-ideles and *K'*-ideles respectively. Then this map allows an extension to $N_{(K',\Phi')}$: $\mathbb{A}_{K'}^{\times} \longrightarrow \mathbb{A}_{K}^{\times}$. This extension is called the type norm. It can be seen that $N_{(K',\Phi')}$ is a continuous homomorphism on $\mathbb{A}_{K'}^{\times}$. (See [16, p124]) The field of definition *k* of an abelian variety \mathcal{A} with CM-type (K, Φ) contains the reflex *K'*. In brief, $k \supset K'$. Thus, we can also define the type norm on the field of definition:

$$N_{\Phi'_k} = N_{(K',\Phi')} N_{k|K'}$$

where $N_{k|K'}$ is the standard norm map of ideles. Note that if g = 1 (elliptic curves) then K = K'.

An analogue of [10, p 162, Lemma 4] can be obtained from applying the Main Theorem of Complex Multiplication (See [9, Theorem 1.1, p84]). The idea of the proof is the same as in [10, p 162, Lemma 4], but we need a modification due to type norm factor in the Main Theorem of Complex Multiplication.

Lemma 2.3. Let $\mathcal{A}, (K, \Phi), (K', \Phi'), k$ be the same notations as before. Let $m \geq 2$ be an integer. Then there exists a nonzero rational integer f such that

$$k(\mathcal{A}[m]) \subset k_{(mf)}$$

where $k_{(mf)}$ is the ray class field corresponding to the principal ideal $(mf) \subset k$.

For the proof of this, we refer to [6, Lemma 2.1].

Let K be a number field of degree $n = r_1 + 2r_2$ with ring of integers \mathcal{O}_K and r_1 the number of distinct real embeddings of K, and let \mathfrak{m} be an integral ideal of K. Define a \mathfrak{m} -ideal class group by an abelian group of equivalence classes of ideals in the following relation:

 $\mathfrak{a} \sim \mathfrak{b} \pmod{\mathfrak{m}},$

if $\mathfrak{ab}^{-1} = (\alpha)$, $\alpha \in K$, $\alpha \equiv 1 \pmod{\mathfrak{m}}$, and α is totally positive. Let $\alpha, \beta \in K$. Denote by $\alpha \equiv \beta \pmod{\mathfrak{m}}$ if $v_{\mathfrak{p}}(\mathfrak{m}) \leq v_{\mathfrak{p}}(\alpha - \beta)$ for all primes \mathfrak{p} and $\alpha\beta^{-1}$ is totally positive. Then we can rewrite the equivalence relation \sim by

$$\mathfrak{ab}^{-1} \in P_K^{\mathfrak{m}} = \{(\alpha) : \alpha \equiv 1 \pmod{\mathfrak{m}}\}$$

The **m**-ideal class group coincides with our definition $C_{\mathfrak{m}}(K) = J_K^{\mathfrak{m}}/P_K^{\mathfrak{m}}$ in the previous chapter. Denote by $h(\mathfrak{m})$ the cardinality of $J_K^{\mathfrak{m}}/P_K^{\mathfrak{m}}$, and h by the class number of K. We have a formula that relates $h(\mathfrak{m})$ and the class number h of K. This follows from an exact sequence:

$$U(K) \longrightarrow (\mathcal{O}_K/\mathfrak{m}\mathcal{O}_K)^{\times} \oplus \{\pm 1\}^{r_1} \longrightarrow C_\mathfrak{m}(K) \longrightarrow C(K) \longrightarrow 1.$$

Denote by $T(\mathfrak{m})$ the cardinality of the image of the unit group U(K) in $(\mathcal{O}_K/\mathfrak{m}\mathcal{O}_K)^{\times} \oplus \{\pm 1\}^{r_1}$. Then we have

$$h(\mathfrak{m}) = \frac{2^{r_1} h \varphi(\mathfrak{m})}{T(\mathfrak{m})}$$

where $\varphi(\mathfrak{m}) = |(\mathcal{O}_K/\mathfrak{m}\mathcal{O}_K)^{\times}|.$

The following lemma is a direct corollary of Lemma 2.3:

Lemma 2.4. Let $\mathcal{A}, (K, \Phi), (K', \Phi'), k$ be the same notations as before. Suppose also that $\mathfrak{p} \subset k$ is a prime of good reduction for \mathcal{A} , and $\mathfrak{p} \nmid m$. Let f be the nonzero integer as in Lemma 2.3. Given $m \ge 1$, there are t(m) ideal classes modulo $(mf) \subset k$ such that

 \mathfrak{p} splits completely in $k(\mathcal{A}[m])$ if and only if $\mathfrak{p} \sim \mathfrak{a}_1, \cdots, \mathfrak{p} \sim \mathfrak{a}_{t(m)}$.

Furthermore, t(m) satisfies the following identity by class field theory,

$$\frac{t(m)}{h((mf))} = \frac{1}{[k(\mathcal{A}[m]):k]}$$

By Lemma 2.5 below, there is an absolute positive constant R depending only on A such that

$$t(m) = \frac{h((mf))}{[k(\mathcal{A}[m]):k]} \le \frac{m^{2l-\nu}}{T((mf))} R^{w(m)}$$

The last inequality can be obtained from applying the following theorem on extension degree of division fields along with a formula for h((mf)). (See [14, Theorem 1.1], also [12])

Lemma 2.5. Let \mathcal{A} be an abelian variety of CM type (K, Φ, \mathfrak{a}) of dimension g defined over a number field k. Then for some $c_1, c_2 > 0$, $n_m = [k(\mathcal{A}[m]) : k]$ satisfies

$$m^{\nu}c_1^{w(m)} \le n_m \le m^{\nu}c_2^{w(m)}$$

where w(m) is the number of distinct prime factors of m, $\nu = Rank(\Phi, K)$, and $2 + \log_2 g \le \nu \le g + 1$ if \mathcal{A} is absolutely simple. Since the reflex type (Φ', K') is always simple and $Rank(\Phi, K) = Rank(\Phi', K')$, we also have that $2 + \log_2 g' \le \nu \le g' + 1$ if $[K' : \mathbb{Q}] = g'$. Thus, we have

$$\max(2 + \log_2 g, 2 + \log_2 g') \le \nu \le \min(g + 1, g' + 1).$$

On the assumptions for Theorem 1.2, g = 2 gives the only choice for $\nu = g + 1 = 3$. Then Lemma 2.4 gives

$$t(m) \le \frac{m}{T((mf))} R^{w(m)}.$$

Taking the sum over $m \leq \sqrt{x}$ above, we have by Corollary 2.3 in section 2.1,

$$\sum_{m \le \sqrt{x}} t(m) \ll_K \sqrt{x} \sum_{m \le \sqrt{x}} \frac{R^{w(m)}}{T((mf))} \ll_K \sqrt{x} \sqrt{x} \exp\left(-\left(\frac{1}{4} + o(1)\right) \log x \frac{\log\log\log x}{\log\log x}\right)$$

This completes the proof of Theorem 1.2.

References

- [1] N. G. de Bruijn, On the number of positive integers $\leq x$ and free of prime factors > y, Nederl. Akad. Wetensch. Proc. Ser. A 69=Indag. Math. 28 (1966), pp. 239-247.
- [2] E. Fouvry, Theoreme de Brun-Titchmarsh; application au theoreme de Fermat, Invent. Math., 79, (1985) pp. 383-407
- [3] T. Freiberg, P. Pollack, The average of the first invariant factor for reductions of CM elliptic curves mod p, Int. Math. Res. Notices, to appear
- [4] A. Granville, Smooth numbers: computational number theory and beyond, Algorithmic Number Theory, MSRI Publications, Volume 44, (2008)
- [5] A. J. Hildebrand, On the Number of Positive Integers $\leq x$ and Free of Prime Factors > y, Journal of Number Theory 22, (1986) pp. 289-307
- [6] S. Kim, Average of the First Invariant Factor of the Reductions of Abelian Varieties of CM Type, accepted for publication.
- P. Kurlberg, Z. Rudnick, On Quantum Ergodicity for Linear Maps of the Torus, Comm. Math. Phys., 222(1):201-227, 2001
- [8] P. Kurlberg, C. Pomerance, On the period of linear congruential and power generators, Acta Arith. 119 (2005), pp. 305-335.
- [9] S. Lang, Complex Multiplication, Springer-Verlag, 1983
- [10] M. R. Murty, On Artin's Conjecture, Journal of Number Theory, Vol 16, no.2, April 1983
- [11] H. Montgomery, R. Vaughan, Multiplicative Number Theory I, Classical Theory, Cambridge Studies in Advanced Mathematics, Cambridge University Press 2007.
- [12] J. Neukirch, Algebraic Number Theory, Springer 1999
- [13] C. Pomerance, On the distribution of pseudoprimes, Math. Comp. 37 (1981), pp. 537-593.
- [14] K. Ribet, Division Fields of Abelian Varieties with Complex Multiplication, Memoires de la S. M. F. 2e serie, tome 2 (1980), pp. 75-94.
- [15] K. Rubin, Elliptic Curves with Complex Multiplication and the Conjecture of Birch and Swinnerton-Dyer, available at http://wstein.org/swc/aws/notes/files/99RubinCM.pdf
- [16] G. Shimura, Abelian Varieties with Complex Multiplications and Modular Functions, Princeton University Press, 1998
- [17] J. Silverman, The Arithmetic of Elliptic Curves, 2nd Edition, Graduate Texts in Mathematics 106, Springer
- [18] J. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Springer
- [19] J. Zelinsky, Upper bounds for the number of primitive ray class characters with conductor below a given bound, arXiv preprint arXiv:http://arxiv.org/abs/1307.2319