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Let N = {1,2,3,...} be the set of all natural numbers and k, m € N. Denote by [n]
the set NN [1,n]. Let m-coloring on a set X be a function from X to [m].

Definition 0.1. S(k,m) is the number of ways to partition [k] into m sets. For
convention, we put S(n,0) = d(n,0).

S(k,m)m! is the number of m-colorings of [k] which all colors are used, that is, the
number of surjective functions from [k] to [m].

Theorem 0.1. For any = € C,

2k = Z Sk, m)(x)m,

m=0
where (x),, = z(x — 1) -+ (z — m + 1) is the falling factorial.

Proof. 1t suffices to prove the identity for all natural number x. The LHS is the number
of z-colorings of [k]. The summand in the RHS,

Sk, m)m! (:1) :

is the number of ways to select m colors from x colors and color [k] using all selected
colors. ]

Corollary 0.1. For any = € C,

(=) = i Sk, m)ml(—1)™ (’” e 1> |

m
m=0

Proof. Put —z into z in Theorem 0.1 and note that (77) = (=1)™(**""). O

Corollary 0.2. For |z| < 1, we have
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Proof. Expanding
k
Z S(k,m)mlz™(1 —z) ™
m=1

by the binomial series, the coefficient of x* is

i S Sk, m)m! <mzw) =3 S(k,mym! (;)

m=1 w>0 m>1
m-+w=v
The result follows by S(k,0) = 0 and Theorem 0.1. O
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Theorem 0.2. Let m be an integer with 1 < m < k. We have

Sk, m)m! = Xm:(—ni (m> (m — i)*.

1
1=0

Proof. Apply Inclusion-Exclusion Principle. Let A; be the set of functions from [£] to
[m] such that j is excluded from the image. The term (7')(m — 4)* is the number of
ways to select ¢ members of [m] and exclude them from the image, that is, the number
of elements in i-fold intersections of A;. O

Corollary 0.3. Let r be a nonnegative integer. Then we have
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Sk,r +1)(r+1)! = Z(—W(T J,r 1) (r+1—1i)*
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The inner sum is (m 1) by notmg that

(—1)("t") is the coefficient of 2 in (1 — z)™*,

(") is the coefficient of 2"+17% in 2(1 — z)"™ 1,

and (—1)"("™) = (") is the coefficient of 27! of x(1—z)™1 """ = g(1—z)"™. O

T

Note that r = 0 case is proved by putting x = 1 in Corollary 0.1.

There is a combinatorial proof of Corollary 0.3. The case r = 0 also has a combi-
natorial proof by involution between even number of parts and odd number of parts.

We construct an involution 7}, mapping odd ordered partitions of k-element set to
even and vice versa: if partition has part {k}, take a union with the previous part;
otherwise move k into new separate part after itself.

Example: ({3,4}, {5}, {1,2}) ¢ ({3,4,5},{1,2}).

For ordered partitions of the form ({k},...), use previous involution T;_; and so on.

Example: ({5}, {4}, {1,3},{2}) < ({5}, {4}, {1}, {3}, {2}).



The only partition without pair will be ({k}, {k —1},...,{1}) which is counted in
S(k, k)k!. Therefore, we have

Z S(k,m)m! = ZSkm)m'+(1)

m is even m is odd

Then consider an ordered partition of m > r + 1 parts, put r part-dividers among
possible m — 1 positions. We nudge all colors between these dividers to one color.
Then we have a surjective function from all m-coloring of [k] using all colors to all
r 4 1-coloring of [k] using all colors. Consider a coloring of [k] using all 7 4 1 colors

with part sizes ay, ..., a,4+1. This particular coloring appears
al Ar41
(S stapicr ) (S storm i) -3
5=0

times on the RHS. Thus, this shows that Corollary 0.3 for special case r = 0 imply the
full version of Corollary 0.3.

Corollary 0.4 (ecl-Chapter 3, Exercise 141(d)). For any t € C,
k k
> Sk, mymit™ =" Sk, m)m(—1)" (¢t + 1)
m=1

Proof. S(k,r +1)(r + ) is the coefficient of t" on the LHS and
S Sk, m)ml(—1)"" (™1 is the coefficient of ¢" on the RHS. The result follows

m=1 r

by Corollary 0.3. O

Corollary 0.5. Let v, = 2¥ — 1. The expression

o)

p(x) 1—x”"z )

v=0

with the power series converges for || < 1, is a polynomial of degree vy — 1 satisfying

o) = (<10 p(1),

Proof. By Corollary 0.2, we have

i((u +1)F — k) = é zk: S(k, m)m! (1 - I)m

v=0 m=1

Then
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Putting 1/x into p(x), we have

p(1/2) = (1 - i).a;mzkj Sk, m)m! (xil)m




Then
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It suffices to prove that

i zk: S(k, m)m! <1 - x)m = —(=1)*! Xk: S(k, m)m! (x i 1)m-

m=1 m=1
Put ¢t = £ = —1 — =, then we have z = + . Thus, we need to prove
t+ 1t k
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This is in fact Corollary 0.4.
The polynomial p(z) has another expression

= Z (k,m)m! + S(k,m+ 1)(m + 1)) (1 — )™ " 2™,

m=0
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