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Let N = {1, 2, 3, . . .} be the set of all natural numbers and k,m ∈ N. Denote by [n]
the set N ∩ [1, n]. Let m-coloring on a set X be a function from X to [m].

Definition 0.1. S(k,m) is the number of ways to partition [k] into m sets. For
convention, we put S(n, 0) = δ(n, 0).

S(k,m)m! is the number of m-colorings of [k] which all colors are used, that is, the
number of surjective functions from [k] to [m].

Theorem 0.1. For any x ∈ C,

xk =
k∑

m=0

S(k,m)(x)m

where (x)m = x(x− 1) · · · (x−m+ 1) is the falling factorial.

Proof. It suffices to prove the identity for all natural number x. The LHS is the number
of x-colorings of [k]. The summand in the RHS,

S(k,m)m!

(
x

m

)
,

is the number of ways to select m colors from x colors and color [k] using all selected
colors.

Corollary 0.1. For any x ∈ C,

(−x)k =
k∑

m=0

S(k,m)m!(−1)m
(
x+m− 1

m

)
.

Proof. Put −x into x in Theorem 0.1 and note that
(−x
m

)
= (−1)m

(
x+m−1

m

)
.

Corollary 0.2. For |x| < 1, we have

∞∑
ν=0

νkxν =
1

1− x

k∑
m=1

S(k,m)m!

(
x

1− x

)m

.

Proof. Expanding
k∑

m=1

S(k,m)m!xm(1− x)−m−1

by the binomial series, the coefficient of xν is

k∑
m=1

∑
w≥0

m+w=ν

S(k,m)m!

(
m+ w

w

)
=
∑
m≥1

S(k,m)m!

(
ν

m

)
.

The result follows by S(k, 0) = 0 and Theorem 0.1.
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Theorem 0.2. Let m be an integer with 1 ≤ m ≤ k. We have

S(k,m)m! =
m∑
i=0

(−1)i
(
m

i

)
(m− i)k.

Proof. Apply Inclusion-Exclusion Principle. Let Aj be the set of functions from [k] to
[m] such that j is excluded from the image. The term

(
m
i

)
(m − i)k is the number of

ways to select i members of [m] and exclude them from the image, that is, the number
of elements in i-fold intersections of Aj.

Corollary 0.3. Let r be a nonnegative integer. Then we have

S(k, r + 1)(r + 1)! =
k∑

m=1

S(k,m)m!(−1)m−k

(
m− 1

r

)
.

Proof. By Theorem 0.2 and Corollary 0.1,

S(k, r + 1)(r + 1)! =
r+1∑
i=0

(−1)i
(
r + 1

i

)
(r + 1− i)k

=
r+1∑
i=0

(−1)i
(
r + 1

i

) k∑
m=1

S(k,m)(−1)m−km!

(
r +m− i

m

)

=
k∑

m=1

S(k,m)m!(−1)m−k

r+1∑
i=0

(−1)i
(
r + 1

i

)(
r +m− i

m

)
The inner sum is

(
m−1
r

)
by noting that

(−1)i
(
r+1
i

)
is the coefficient of xi in (1− x)r+1,(

r+m−i
m

)
is the coefficient of xr+1−i in x(1− x)−m−1,

and (−1)r
(
r−m
r

)
=
(
m−1
r

)
is the coefficient of xr+1 of x(1−x)r+1−m−1 = x(1−x)r−m.

Note that r = 0 case is proved by putting x = 1 in Corollary 0.1.

There is a combinatorial proof of Corollary 0.3. The case r = 0 also has a combi-
natorial proof by involution between even number of parts and odd number of parts.

We construct an involution Tk, mapping odd ordered partitions of k-element set to
even and vice versa: if partition has part {k}, take a union with the previous part;
otherwise move k into new separate part after itself.

Example: ({3, 4}, {5}, {1, 2}) ↔ ({3, 4,5}, {1, 2}).

For ordered partitions of the form ({k}, . . .), use previous involution Tk−1 and so on.

Example: ({5}, {4}, {1,3}, {2}) ↔ ({5}, {4}, {1}, {3}, {2}).
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The only partition without pair will be ({k}, {k − 1}, . . . , {1}) which is counted in
S(k, k)k!. Therefore, we have∑

m is even

S(k,m)m! =
∑

m is odd

S(k,m)m! + (−1)k.

Then consider an ordered partition of m ≥ r + 1 parts, put r part-dividers among
possible m − 1 positions. We nudge all colors between these dividers to one color.
Then we have a surjective function from all m-coloring of [k] using all colors to all
r + 1-coloring of [k] using all colors. Consider a coloring of [k] using all r + 1 colors
with part sizes a1, . . . , ar+1. This particular coloring appears(

a1∑
j=0

S(a1, j)j!(−1)a1−j

)
· · ·

(
ar+1∑
j=0

S(ar+1, j)j!(−1)ar+1−j

)
= 1

times on the RHS. Thus, this shows that Corollary 0.3 for special case r = 0 imply the
full version of Corollary 0.3.

Corollary 0.4 (ec1-Chapter 3, Exercise 141(d)). For any t ∈ C,

k∑
m=1

S(k,m)m!tm−1 =
k∑

m=1

S(k,m)m!(−1)m−k(t+ 1)m−1.

Proof. S(k, r + 1)(r + 1)! is the coefficient of tr on the LHS and∑k
m=1 S(k,m)m!(−1)m−k

(
m−1
r

)
is the coefficient of tr on the RHS. The result follows

by Corollary 0.3.

Corollary 0.5. Let vk = 2k − 1. The expression

ρ(x) = (1− x)vk
∞∑
ν=0

((ν + 1)k − νk)xν

with the power series converges for |x| < 1, is a polynomial of degree vk − 1 satisfying

ρ(x) = (−1)k−1xvk−1ρ(
1

x
).

Proof. By Corollary 0.2, we have

∞∑
ν=0

((ν + 1)k − νk)xν =
1

x

k∑
m=1

S(k,m)m!

(
x

1− x

)m

.

Then

ρ(x) = (1− x)vk
1

x

k∑
m=1

S(k,m)m!

(
x

1− x

)m

.

Putting 1/x into ρ(x), we have

ρ(1/x) =

(
1− 1

x

)vk

x
k∑

m=1

S(k,m)m!

(
1

x− 1

)m

.
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Then

xvk−1ρ(
1

x
) = (x− 1)vk

k∑
m=1

S(k,m)m!

(
1

x− 1

)m

= −(1− x)vk
k∑

m=1

S(k,m)m!

(
1

x− 1

)m

.

It suffices to prove that

1

x

k∑
m=1

S(k,m)m!

(
x

1− x

)m

= −(−1)k−1

k∑
m=1

S(k,m)m!

(
1

x− 1

)m

.

Put t = x
1−x

= −1− 1
x−1

, then we have x = t
t+1

. Thus, we need to prove

t+ 1

t

k∑
m=1

S(k,m)m!tm = −(−1)k−1

k∑
m=1

S(k,m)m!(−1)m(t+ 1)m.

This is in fact Corollary 0.4.

The polynomial ρ(x) has another expression

ρ(x) =
k∑

m=0

(
S(k,m)m! + S(k,m+ 1)(m+ 1)!

)
(1− x)vk−m xm.
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