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Abstract. Let E be an elliptic curve defined over Q. It is known that
the structure of the reduction E(Fp) is

(1) E(Fp) ' Z/dpZ⊕ Z/epZ.
with dp|ep. The constant

CE,j =

∞∑
k=1

µ(k)

[Q(E[jk]) : Q]

appears as the density of primes p with good reduction for E and dp = j
(Under the GRH in the non-CM case, unconditionally in the CM case).
We give appropriate conditions for this constant to be positive when
j > 1.

1. introduction

Let E be an elliptic curve over Q, and p be a prime of good reduction for
E. Denote E(Fp) by the group of Fp-rational points of E. It is known that
the structure of E(Fp) is

(2) E(Fp) ' Z/dpZ⊕ Z/epZ.
with dp|ep. The cyclicity problem asks for the density of primes p of good
reduction for E such that dp = 1. We exclude the degenerate case Q(E[2]) =
Q, where we have CE = 0 trivially. Thus, all the works cited below are under
the assumption Q(E[2]) 6= Q.

Let N be the conductor of the elliptic curve E and denote f(x,E) by the
number of primes p of good reduction for E such that dp = 1. A. Cojocaru
and M. R. Murty (see [CM]) obtained that if E does not have complex
multiplication(non-CM curves), then

f(x,E) = CELi(x) +ON (x5/6(log x)2/3),

under the Generalized Riemann Hypothesis(GRH) for the Dedekind zeta
functions of division fields. For elliptic curves with complex multiplica-
tion(CM curves), they obtained

f(x,E) = CELi(x) +ON (x3/4(logNx)1/2),

under the GRH. Unconditional error term in CM case is O(x log x)−A for
any positive A. Precisely, A. Akbary and V. K. Murty (see [AM]) obtained

f(x,E) = CELi(x) +OA,B(x(log x)−A),
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for any positive constant A,B, and the OA,B is uniform for N ≤ (log x)B.

Here, CE =
∑∞

k=1
µ(k)

[Q(E[k]):Q] .

A. Cojocaru (see [C]) obtained the density of primes p of good reduction
for E such that dp = j for j > 1. It is

CE,j =
∞∑
k=1

µ(k)

[Q(E[jk]) : Q]
,

under the GRH for the Dedekind zeta functions of division fields. For CM
curves, it can be shown unconditionally. Denote by A(E) the associated
Serre’s constant for the elliptic curve E, which has the property:

If (k,A(E)) = 1, then the Galois representation:

Gal(Q(E[k])/Q)→ GL(2,Z/kZ) is surjective.

The positivity of CE in non-CM case is achievable under the GRH, and
it can be done unconditionally in CM case. However, it was not known
whether CE,j > 0 for some j > 1. In this note, we obtain the positivity
under appropriate conditions.

Theorem 1.1. Let E be a non-CM elliptic curve over Q, and N the con-
ductor of E. Let A(E) be the associated Serre’s constant. Suppose also that
Q(E[2]) 6= Q. Let j > 1 be an integer satisfying (j, 2NA(E)) = 1. Then
CE,j > 0 under the GRH for the division fields.

The prime 2 requires a special care, for an elliptic curve y2 = x3 + ax+ b
defined over Q, let K2 be a quadratic or cubic subfield of Q(E[2]). Precisely,
K2 is defined as follows,

K2 =

{
Q(
√
−4a3 − 27b3) if [Q(E[2]) : Q] = 2, or 6

Q(α) if [Q(E[2]) : Q] = 3.

where α is a root of x3 + ax+ b = 0 in Q.

Theorem 1.2. Let E be an elliptic curve over Q which has CM by the
full ring of integers OK in an imaginary quadratic field K. Let N be the
conductor of E. Suppose that K2 6= K. Let (j, 6N) = 1. Then CE,j > 0.

2. Preliminaries

We generalize a certain properties of Euler Totient function φ.

Definition 2.1. We call a function f : N −→ C multiplicative function
of φ-type if there is a fixed arithmetic function g and a number N > 0 such
that

f(n) = nN
∏
p|n

g(p).
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Example 2.1. The Euler’s Totient function:

φ(n) = n
∏
p|n

(
1− 1

p

)
Example 2.2. The cardinality of the group GL(2,Z/nZ):

ψ(n) = n4
∏
p|n

(
1− 1

p

)(
1− 1

p2

)
Example 2.3. The analogue of the Euler’s Totient function for a quadratic
field K:

Φ(n) =
∣∣(OK/nOK)×

∣∣ = n2
∏
p|n

g(p),

where

g(p) =


1− 1

p2
if p is inert in K(

1− 1
p

)2
if p splits in K

1− 1
p if p ramifies in K

If f is a multiplicative function of φ-type, then it satisfies

f([m,n])f((m,n)) = f(m)f(n).

The following lemmas are well-known facts about Galois representation of
elliptic curves. They can be found in [S], also in [S2], see also [S3], and
well-summarized in [K]. For the CM case, we refer to [D].

Lemma 2.1 (Serre). If E is non-CM curve, then there exists A(E) such
that

Gal(Q(E[k])/Q) ' GL(2,Z/kZ)

if (k,A(E)) = 1. Moreover, Q(ζk) is the maximal abelian subextension in
Q(E[k]).

Lemma 2.2 (Deuring). If E has CM by the full ring of integers OK of an
imaginary quadratic field K and N be the conductor, then

Gal(K(E[k])/K) ' (OK/kOK)×

if (k, 6N) = 1.

3. Proof of Theorem 1.1

By the argument given in [FK, Chapter 7], together with open image
theorem by Serre, we have the following proposition with some m(E) ∈
〈2A(E)〉 = {n ∈ Z : p|n ⇒ p|2A(E)} when E does not have CM. Let
Gk = Gal(Q(E[k]) : Q), and denote by mp the maximal power of p for a
prime p|m(E). Similarly, let kp be the maximal power of p that divides k.
Then we have the following information about the size of Gk.
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Proposition 3.1. Let k = hj with h ∈ 〈m(E)〉 = {h : p|h⇒ p|m(E)}, and
(j,m(E)) = 1. Then |Gk| = |Gh||Gj |, and with h1 = (h,m(E)), we have

|Gh| = |Gh1 |
∏
pkp ||h
kp>mp

p4(kp−mp).

Further, |Gj | = ψ(j), and hence

|Gk| = |Gh1 |ψ(j)
∏
pkp ||h
kp>mp

p4(kp−mp).

Corollary 3.1. Let E be a non-CM elliptic curve. Then we have

∞∑
k=1

µ(k)

[Q(E[k]) : Q]
=

 ∑
k∈〈2NA(E)〉

µ(k)

[Q(E[k]) : Q]

 ∏
p-2NA(E)

(
1− 1

ψ(p)

)
.

For j > 1 with (j, 2NA(E)) = 1, similar formula holds true,

Corollary 3.2. Let E be a non-CM elliptic curve. Then we have

∞∑
k=1

µ(k)

[Q(E[jk]) : Q(E[j])]
=

 ∑
k∈〈2NA(E)〉

µ(k)

[Q(E[k]) : Q]

 ∏
p-2NA(E)

(
1− ψ(j)

ψ(jp)

)
.

Proof. If k ∈ 〈2A(E)〉 and (2A(E),m) = 1, then |Gjkm| = |Gk||Gjm|. Thus,
|Gjkm|/|Gj | = |Gk||Gjm|/|Gj |. Since ψ is a multiplicative function of φ-
type, we have m 7→ |Gjm|/|Gj | is a multiplicative function from positive
integers coprime to 2A(E). �

Thus, positivity of
∑ µ(k)

[Q(E[k]):Q] is equivalent to positivity of
∑ µ(k)

[Q(E[jk]):Q]

when (j, 2NA(E)) = 1. On the other hand, positivity of former one follows
from [CM, Theorem 1.1]. Therefore, we have Theorem 1.1.

4. Proof of Theorem 1.2

Let E be an elliptic curve over Q with CM by the full ring of integers OK
in an imaginary quadratic field K. First, notice that

CE,j =

∞∑
k=1

µ(k)

[Q(E[jk]) : Q(E[j])][Q(E[j]) : Q]
.

We prove positivity of CE,j [Q(E[j]) : Q].
Since (j, 6N) = 1, we know that Q(E[j]) contains K (see [M, Lemma 6, p

165]). Proving positivity of CE,j [Q(E[j]) : Q] is equivalent to proving that
of

∞∑
k=1

µ(k)

[K(E[jk]) : K(E[j])]
.
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We now regard E as an elliptic curve defined over K. Consider a prime
ideal p of a good reduction for E. Then the structure of reduction modulo
p is:

Z/d1(p)Z⊕ Z/d2(p)Z,
where d1(p)|d2(p).

The following is essential toward our proof of Theorem 1.2.

Theorem 4.1. Let E be an elliptic curve over Q with CM by the full ring
of integers OK in an imaginary quadratic field K. Then

|{Np ≤ x : E has a good reduction at p, d1(p) = 1}| � x

log2 x
.

We quote a lemma from sieve theory (see [GM, Lemma 3]). We need
to include one more congruence condition on the primes p required in the
lemma.

Lemma 4.1 (Gupta, Murty). Let Sε(x) be the set of primes p ≤ x such

that all odd prime divisors of p− 1 are distinct and ≥ x
1
4
+ε, p does not split

completely in the field K2, p splits completely in the imaginary quadratic
CM field K, and E has good reduction at p. Then if K2 6= Q there is an
ε > 0 such that |Sε(x)| � x/ log2 x.

Proof of Theorem 4.1. Note that the number of primes p in K with Np ≤ x
that lie above p, and p is inert in K, is O(

√
x

log x). We are now ready to

prove Theorem 1.2. We enumerate prime ideals p in K with Np ≤ x such
that Np = p ∈ S(a, x) := {p ∈ Sε(x)|ap = a} and d1(p) > 1. Then there
exists an odd prime q such that q2|Np + 1− ap = p+ 1− ap. Since p splits
completely in K, p splits completely in Q(E[q]), consequently in Q(ζq). Thus
p ≡ 1 (mod q). We follow the proof of [GM, Lemma 3]. Then it follows that

|{p : Np = p ∈ Sε(x)}∩{Np ≤ x : E has a good reduction at p, d1(p) 6= 1}| � x1−2ε.

By the above and Lemma 4.1, Theorem 4.1 now follows. �

The following proposition is proved in [CM].

Proposition 4.1. Let E be an elliptic curve over Q which has CM by OK .
Then we have

CE ≥
1

2
if K ⊆ Q(E[2]). On the other hand,

CE ≥
1

4

if K * Q(E[2]).

We provide an alternative proof of this proposition based on our theory.
In fact, we have

CE =
1

2
+

1

2

∞∑
k=1

µ(k)

[K(E[k]) : K]
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if K ⊆ Q(E[2]). This is because 2[K(E[k]) : K] = 2[Q(E[k]) : K] =
[Q(E[k]) : Q] for all k ≥ 2. On the other hand,

CE =
1

2
− 1

2[K(E[2]) : K]
+

1

2

∞∑
k=1

µ(k)

[K(E[k]) : K]

if K * Q(E[2]). This case yields 2[K(E[k]) : K] = 2[Q(E[k]) : K] =
[Q(E[k]) : Q] only for k ≥ 3. Since E[2] is not rational over Q, we see that
[K(E[2]) : K] = [Q(E[2]) : Q] ≥ 2 in this case. Moreover,

∞∑
k=1

µ(k)

[K(E[k]) : K]
≥ 0

because the density of prime ideals p such that Np ≤ x, d1(p) = 1, and E has
a good reduction at p must be nonnegative. (Here, GRH is not necessary,
see [M, page 164-165] for details.)

Let [K(E[k]) : K] = |Gk| where Gk is the image under the following
Galois representation,

Gal(K/K) −→ Aut(E[k]) ' (OK/kOK)∗

As in [FK, Chapter 7], we adopt the same idea in the CM case. We have a
homomorphism of groups

ρ : Gal(K/K) −→ G :=
∏

l:primes in K

(OK,l)∗

There is natural projection πk : G −→ (OK/kOK)∗ for each k.
Let Γk = Ker(πk). Then H := ρ(Gal(K/K)) has a finite index in G by
Serre’s open image theorem. The image of the composition πk ◦ ρ is isomor-
phic to Gk, hence by the first isomorphism theorem,

H/H ∩ Γk ' Gk.

The analogue of the claim in [FK, Chapter 7, page 24] in the CM case, is as
follows:
They take m to be the smallest positive integer that Γm < H, but m does
not have to be the smallest with the property. Instead, we can take m ∈
〈6N〉 := {h : p|h⇒ p|6N}. Write m =

∏
p|m p

mp , k =
∏
p|k p

kp .

Claim: If kp ≥ mp for some p and a ≥ 1, then

|H/H ∩ Γpak| = |H/H ∩ Γk| · |Γpkp/Γpa+kp |

Moreover, if kp = 0, we have |Γpkp/Γpa+kp | = |Γ1/Γpa | = Φ(pa), and if
kp > 0, then

|Γpkp/Γpa+kp | = |Γp/Γp2 |
a = p2a.

From this claim, we obtain that
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Proposition 4.2. Let k = hj with h ∈ 〈m〉 := {h : p|h ⇒ p|m}, and
(j,m) = 1. Then |Gk| = |Gh||Gj |, and with h1 = (h,m), we have

|Gh| = |Gh1 |
∏
pνp ||h
νp>mp

p2(νp−mp).

Further, |Gj | = Φ(j), and hence

|Gk| = |Gh1 |Φ(j)
∏
pνp ||h
νp>mp

p2(νp−mp).

Applying methods shown in [FK, Chapter 7] to CM case, we have

Corollary 4.1. Let E be an elliptic curve that has CM by OK . Then we
have

∞∑
k=1

µ(k)

|Gk|
=

 ∑
k∈〈6N〉

µ(k)

|Gk|

 ∏
p-6N

(
1− 1

Φ(p)

)
.

For j > 1 with (j, 6N) = 1, similar formula holds true,

Corollary 4.2. Let E be an elliptic curve that has CM by OK . Then we
have

∞∑
k=1

µ(k)

[K(E[jk]) : K(E[j])]
=

 ∑
k∈〈6N〉

µ(k)

|Gk|

 ∏
p-6N

(
1− Φ(j)

Φ(jp)

)
.

K(E[jkn])

K(E[kn])K(E[jk]) K(E[jn])

K(E[k]) K(E[n]) K(E[j])

K

Figure 1. CM Case Illustration

Proof of Corollary 4.2. If k ∈ 〈6N〉 and (6N,n) = 1, then |Gjkn| = |Gk||Gjn|.
Thus, |Gjkn|/|Gj | = |Gk||Gjn|/|Gj |. Since Φ is a multiplicative function of
φ-type, we have n 7→ |Gjn|/|Gj | is a multiplicative function from positive
integers coprime to 6N . �

These corollaries show that positivity of any one of the constants men-
tioned, would provide positivity of the other. The LHS of Corollary 4.1
represents the density of prime ideals p such that Np ≤ x, E has a good
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reduction at p, and d1(p) = 1. This density must be positive because of The-
orem 4.1, otherwise the number of the prime ideals above would be O( x

log3 x
)

(by taking A = 3 in [AM]) which contradicts Theorem 4.1.
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