POSITIVITY OF CONSTANTS RELATED TO ELLIPTIC CURVES

KIM, SUNGJIN

$$
\begin{aligned}
& \text { Abstract. Let } E \text { be an elliptic curve defined over } \mathbb{Q} \text {. It is known that } \\
& \text { the structure of the reduction } E\left(\mathbb{F}_{p}\right) \text { is } \\
& \qquad E\left(\mathbb{F}_{p}\right) \simeq \mathbb{Z} / d_{p} \mathbb{Z} \oplus \mathbb{Z} / e_{p} \mathbb{Z} . \\
& \text { (1) } \\
& \text { with } d_{p} \mid e_{p} \text {. The constant } \\
& \qquad C_{E, j}=\sum_{k=1}^{\infty} \frac{\mu(k)}{[\mathbb{Q}(E[j k]): \mathbb{Q}]} \\
& \text { appears as the density of primes } p \text { with good reduction for } E \text { and } d_{p}=j \\
& \text { (Under the GRH in the non-CM case, unconditionally in the CM case). } \\
& \text { We give appropriate conditions for this constant to be positive when } \\
& j>1 .
\end{aligned}
$$

1. INTRODUCTION

Let E be an elliptic curve over \mathbb{Q}, and p be a prime of good reduction for E. Denote $E\left(\mathbb{F}_{p}\right)$ by the group of \mathbb{F}_{p}-rational points of E. It is known that the structure of $E\left(\mathbb{F}_{p}\right)$ is

$$
\begin{equation*}
E\left(\mathbb{F}_{p}\right) \simeq \mathbb{Z} / d_{p} \mathbb{Z} \oplus \mathbb{Z} / e_{p} \mathbb{Z} \tag{2}
\end{equation*}
$$

with $d_{p} \mid e_{p}$. The cyclicity problem asks for the density of primes p of good reduction for E such that $d_{p}=1$. We exclude the degenerate case $\mathbb{Q}(E[2])=$ \mathbb{Q}, where we have $C_{E}=0$ trivially. Thus, all the works cited below are under the assumption $\mathbb{Q}(E[2]) \neq \mathbb{Q}$.

Let N be the conductor of the elliptic curve E and denote $\mathfrak{f}(x, E)$ by the number of primes p of good reduction for E such that $d_{p}=1$. A. Cojocaru and M. R. Murty (see $[\mathrm{CM}]$) obtained that if E does not have complex multiplication(non-CM curves), then

$$
\mathfrak{f}(x, E)=C_{E} \operatorname{Li}(x)+O_{N}\left(x^{5 / 6}(\log x)^{2 / 3}\right)
$$

under the Generalized Riemann Hypothesis(GRH) for the Dedekind zeta functions of division fields. For elliptic curves with complex multiplication(CM curves), they obtained

$$
\mathfrak{f}(x, E)=C_{E} \operatorname{Li}(x)+O_{N}\left(x^{3 / 4}(\log N x)^{1 / 2}\right)
$$

under the GRH. Unconditional error term in CM case is $O(x \log x)^{-A}$ for any positive A. Precisely, A. Akbary and V. K. Murty (see [AM]) obtained

$$
\mathfrak{f}(x, E)=C_{E} \operatorname{Li}(x)+O_{A, B}\left(x(\log x)^{-A}\right)
$$

for any positive constant A, B, and the $O_{A, B}$ is uniform for $N \leq(\log x)^{B}$. Here, $C_{E}=\sum_{k=1}^{\infty} \frac{\mu(k)}{[\mathbb{Q}[E[k]): \mathbb{Q}]}$.
A. Cojocaru (see [C]) obtained the density of primes p of good reduction for E such that $d_{p}=j$ for $j>1$. It is

$$
C_{E, j}=\sum_{k=1}^{\infty} \frac{\mu(k)}{\mathbb{Q}(E[j k]): \mathbb{Q}]},
$$

under the GRH for the Dedekind zeta functions of division fields. For CM curves, it can be shown unconditionally. Denote by $A(E)$ the associated Serre's constant for the elliptic curve E, which has the property:

$$
\text { If }(k, A(E))=1 \text {, then the Galois representation: }
$$

$$
\operatorname{Gal}(\mathbb{Q}(E[k]) / \mathbb{Q}) \rightarrow \mathrm{GL}(2, \mathbb{Z} / k \mathbb{Z}) \text { is surjective. }
$$

The positivity of C_{E} in non-CM case is achievable under the GRH, and it can be done unconditionally in CM case. However, it was not known whether $C_{E, j}>0$ for some $j>1$. In this note, we obtain the positivity under appropriate conditions.
Theorem 1.1. Let E be a non-CM elliptic curve over \mathbb{Q}, and N the conductor of E. Let $A(E)$ be the associated Serre's constant. Suppose also that $\mathbb{Q}(E[2]) \neq \mathbb{Q}$. Let $j>1$ be an integer satisfying $(j, 2 N A(E))=1$. Then $C_{E, j}>0$ under the GRH for the division fields.

The prime 2 requires a special care, for an elliptic curve $y^{2}=x^{3}+a x+b$ defined over \mathbb{Q}, let K_{2} be a quadratic or cubic subfield of $\mathbb{Q}(E[2])$. Precisely, K_{2} is defined as follows,

$$
K_{2}= \begin{cases}\mathbb{Q}\left(\sqrt{-4 a^{3}-27 b^{3}}\right) & \text { if }[\mathbb{Q}(E[2]): \mathbb{Q}]=2, \text { or } 6 \\ \mathbb{Q}(\alpha) & \text { if }[\mathbb{Q}(E[2]): \mathbb{Q}]=3 .\end{cases}
$$

where α is a root of $x^{3}+a x+b=0$ in $\overline{\mathbb{Q}}$.
Theorem 1.2. Let E be an elliptic curve over \mathbb{Q} which has CM by the full ring of integers \mathcal{O}_{K} in an imaginary quadratic field K. Let N be the conductor of E. Suppose that $K_{2} \neq K$. Let $(j, 6 N)=1$. Then $C_{E, j}>0$.

2. Preliminaries

We generalize a certain properties of Euler Totient function ϕ.
Definition 2.1. We call a function $f: \mathbb{N} \longrightarrow \mathbb{C}$ multiplicative function of ϕ-type if there is a fixed arithmetic function g and a number $N>0$ such that

$$
f(n)=n^{N} \prod_{p \mid n} g(p)
$$

Example 2.1. The Euler's Totient function:

$$
\phi(n)=n \prod_{p \mid n}\left(1-\frac{1}{p}\right)
$$

Example 2.2. The cardinality of the group $G L(2, \mathbb{Z} / n \mathbb{Z})$:

$$
\psi(n)=n^{4} \prod_{p \mid n}\left(1-\frac{1}{p}\right)\left(1-\frac{1}{p^{2}}\right)
$$

Example 2.3. The analogue of the Euler's Totient function for a quadratic field K :

$$
\Phi(n)=\left|\left(\mathcal{O}_{K} / n \mathcal{O}_{K}\right)^{\times}\right|=n^{2} \prod_{p \mid n} g(p)
$$

where

$$
g(p)= \begin{cases}1-\frac{1}{p^{2}} & \text { if } p \text { is inert in } K \\ \left(1-\frac{1}{p}\right)^{2} & \text { if } p \text { splits in } K \\ 1-\frac{1}{p} & \text { if } p \text { ramifies in } K\end{cases}
$$

If f is a multiplicative function of ϕ-type, then it satisfies

$$
f([m, n]) f((m, n))=f(m) f(n) .
$$

The following lemmas are well-known facts about Galois representation of elliptic curves. They can be found in [S], also in [S2], see also [S3], and well-summarized in $[\mathrm{K}]$. For the CM case, we refer to [D].

Lemma 2.1 (Serre). If E is non-CM curve, then there exists $A(E)$ such that

$$
\operatorname{Gal}(\mathbb{Q}(E[k]) / \mathbb{Q}) \simeq G L(2, \mathbb{Z} / k \mathbb{Z})
$$

if $(k, A(E))=1$. Moreover, $\mathbb{Q}\left(\zeta_{k}\right)$ is the maximal abelian subextension in $\mathbb{Q}(E[k])$.

Lemma 2.2 (Deuring). If E has $C M$ by the full ring of integers \mathcal{O}_{K} of an imaginary quadratic field K and N be the conductor, then

$$
\operatorname{Gal}(K(E[k]) / K) \simeq\left(\mathcal{O}_{K} / k \mathcal{O}_{K}\right)^{\times}
$$

if $(k, 6 N)=1$.

3. Proof of Theorem 1.1

By the argument given in [FK, Chapter 7], together with open image theorem by Serre, we have the following proposition with some $m(E) \in$ $\langle 2 A(E)\rangle=\{n \in \mathbb{Z}: p|n \Rightarrow p| 2 A(E)\}$ when E does not have CM. Let $G_{k}=\operatorname{Gal}(\mathbb{Q}(E[k]): \mathbb{Q})$, and denote by m_{p} the maximal power of p for a prime $p \mid m(E)$. Similarly, let k_{p} be the maximal power of p that divides k. Then we have the following information about the size of G_{k}.

Proposition 3.1. Let $k=h j$ with $h \in\langle m(E)\rangle=\{h: p|h \Rightarrow p| m(E)\}$, and $(j, m(E))=1$. Then $\left|G_{k}\right|=\left|G_{h}\right|\left|G_{j}\right|$, and with $h_{1}=(h, m(E))$, we have

$$
\left|G_{h}\right|=\left|G_{h_{1}}\right| \prod_{\substack{p^{k_{p}} \| h \\ k_{p}>m_{p}}} p^{4\left(k_{p}-m_{p}\right)}
$$

Further, $\left|G_{j}\right|=\psi(j)$, and hence

$$
\left|G_{k}\right|=\left|G_{h_{1}}\right| \psi(j) \prod_{\substack{p^{k_{p}} \| \mid h \\ k_{p}>m_{p}}} p^{4\left(k_{p}-m_{p}\right)}
$$

Corollary 3.1. Let E be a non-CM elliptic curve. Then we have

$$
\sum_{k=1}^{\infty} \frac{\mu(k)}{[\mathbb{Q}(E[k]): \mathbb{Q}]}=\left(\sum_{k \in\langle 2 N A(E)\rangle} \frac{\mu(k)}{[\mathbb{Q}(E[k]): \mathbb{Q}]}\right) \prod_{p \nmid 2 N A(E)}\left(1-\frac{1}{\psi(p)}\right)
$$

For $j>1$ with $(j, 2 N A(E))=1$, similar formula holds true,
Corollary 3.2. Let E be a non-CM elliptic curve. Then we have

$$
\sum_{k=1}^{\infty} \frac{\mu(k)}{[\mathbb{Q}(E[j k]): \mathbb{Q}(E[j])]}=\left(\sum_{k \in\langle 2 N A(E)\rangle} \frac{\mu(k)}{[\mathbb{Q}(E[k]): \mathbb{Q}]}\right) \prod_{p \nmid 2 N A(E)}\left(1-\frac{\psi(j)}{\psi(j p)}\right) .
$$

Proof. If $k \in\langle 2 A(E)\rangle$ and $(2 A(E), m)=1$, then $\left|G_{j k m}\right|=\left|G_{k}\right|\left|G_{j m}\right|$. Thus, $\left|G_{j k m}\right| /\left|G_{j}\right|=\left|G_{k}\right|\left|G_{j m}\right| /\left|G_{j}\right|$. Since ψ is a multiplicative function of ϕ type, we have $m \mapsto\left|G_{j m}\right| /\left|G_{j}\right|$ is a multiplicative function from positive integers coprime to $2 A(E)$.

Thus, positivity of $\sum \frac{\mu(k)}{[\mathbb{Q}(E[k]): \mathbb{Q}]}$ is equivalent to positivity of $\sum \frac{\mu(k)}{[\mathbb{Q}(E[j k]): \mathbb{Q}]}$ when $(j, 2 N A(E))=1$. On the other hand, positivity of former one follows from [CM, Theorem 1.1]. Therefore, we have Theorem 1.1.

4. Proof of Theorem 1.2

Let E be an elliptic curve over \mathbb{Q} with CM by the full ring of integers \mathcal{O}_{K} in an imaginary quadratic field K. First, notice that

$$
C_{E, j}=\sum_{k=1}^{\infty} \frac{\mu(k)}{[\mathbb{Q}(E[j k]): \mathbb{Q}(E[j])][\mathbb{Q}(E[j]): \mathbb{Q}]} .
$$

We prove positivity of $C_{E, j}[\mathbb{Q}(E[j]): \mathbb{Q}]$.
Since $(j, 6 N)=1$, we know that $\mathbb{Q}(E[j])$ contains K (see $[M$, Lemma $6, \mathrm{p}$ $165])$. Proving positivity of $C_{E, j}[\mathbb{Q}(E[j]): \mathbb{Q}]$ is equivalent to proving that of

$$
\sum_{k=1}^{\infty} \frac{\mu(k)}{[K(E[j k]): K(E[j])]}
$$

We now regard E as an elliptic curve defined over K. Consider a prime ideal \mathfrak{p} of a good reduction for E. Then the structure of reduction modulo \mathfrak{p} is:

$$
\mathbb{Z} / d_{1}(\mathfrak{p}) \mathbb{Z} \oplus \mathbb{Z} / d_{2}(\mathfrak{p}) \mathbb{Z}
$$

where $d_{1}(\mathfrak{p}) \mid d_{2}(\mathfrak{p})$.
The following is essential toward our proof of Theorem 1.2.
Theorem 4.1. Let E be an elliptic curve over \mathbb{Q} with $C M$ by the full ring of integers \mathcal{O}_{K} in an imaginary quadratic field K. Then

$$
\mid\left\{N \mathfrak{p} \leq x: E \text { has a good reduction at } \mathfrak{p}, d_{1}(\mathfrak{p})=1\right\} \left\lvert\, \gg \frac{x}{\log ^{2} x}\right.
$$

We quote a lemma from sieve theory (see [GM, Lemma 3]). We need to include one more congruence condition on the primes p required in the lemma.

Lemma 4.1 (Gupta, Murty). Let $S_{\epsilon}(x)$ be the set of primes $p \leq x$ such that all odd prime divisors of $p-1$ are distinct and $\geq x^{\frac{1}{4}+\epsilon}$, p does not split completely in the field K_{2}, p splits completely in the imaginary quadratic $C M$ field K, and E has good reduction at p. Then if $K_{2} \neq \mathbb{Q}$ there is an $\epsilon>0$ such that $\left|S_{\epsilon}(x)\right| \ggg / \log ^{2} x$.

Proof of Theorem 4.1. Note that the number of primes \mathfrak{p} in K with $N \mathfrak{p} \leq x$ that lie above p, and p is inert in K, is $O\left(\frac{\sqrt{x}}{\log x}\right)$. We are now ready to prove Theorem 1.2. We enumerate prime ideals \mathfrak{p} in K with $N \mathfrak{p} \leq x$ such that $N \mathfrak{p}=p \in S(a, x):=\left\{p \in S_{\epsilon}(x) \mid a_{p}=a\right\}$ and $d_{1}(\mathfrak{p})>1$. Then there exists an odd prime q such that $q^{2} \mid N \mathfrak{p}+1-a_{\mathfrak{p}}=p+1-a_{p}$. Since p splits completely in K, p splits completely in $\mathbb{Q}(E[q])$, consequently in $\mathbb{Q}\left(\zeta_{q}\right)$. Thus $p \equiv 1(\bmod q)$. We follow the proof of [GM, Lemma 3]. Then it follows that
$\mid\left\{\mathfrak{p}: N \mathfrak{p}=p \in S_{\epsilon}(x)\right\} \cap\left\{N \mathfrak{p} \leq x: E\right.$ has a good reduction at $\left.\mathfrak{p}, d_{1}(\mathfrak{p}) \neq 1\right\} \mid \ll x^{1-2 \epsilon}$.
By the above and Lemma 4.1, Theorem 4.1 now follows.
The following proposition is proved in $[\mathrm{CM}]$.
Proposition 4.1. Let E be an elliptic curve over \mathbb{Q} which has $C M$ by \mathcal{O}_{K}.
Then we have

$$
C_{E} \geq \frac{1}{2}
$$

if $K \subseteq \mathbb{Q}(E[2])$. On the other hand,

$$
C_{E} \geq \frac{1}{4}
$$

if $K \nsubseteq \mathbb{Q}(E[2])$.
We provide an alternative proof of this proposition based on our theory. In fact, we have

$$
C_{E}=\frac{1}{2}+\frac{1}{2} \sum_{k=1}^{\infty} \frac{\mu(k)}{[K(E[k]): K]}
$$

if $K \subseteq \mathbb{Q}(E[2])$. This is because $2[K(E[k]): K]=2[\mathbb{Q}(E[k]): K]=$ $[\mathbb{Q}(E[k]): \mathbb{Q}]$ for all $k \geq 2$. On the other hand,

$$
C_{E}=\frac{1}{2}-\frac{1}{2[K(E[2]): K]}+\frac{1}{2} \sum_{k=1}^{\infty} \frac{\mu(k)}{[K(E[k]): K]}
$$

if $K \nsubseteq \mathbb{Q}(E[2])$. This case yields $2[K(E[k]): K]=2[\mathbb{Q}(E[k]): K]=$ $[\mathbb{Q}(E[k]): \mathbb{Q}]$ only for $k \geq 3$. Since $E[2]$ is not rational over \mathbb{Q}, we see that $[K(E[2]): K]=[\mathbb{Q}(E[2]): \mathbb{Q}] \geq 2$ in this case. Moreover,

$$
\sum_{k=1}^{\infty} \frac{\mu(k)}{[K(E[k]): K]} \geq 0
$$

because the density of prime ideals \mathfrak{p} such that $N \mathfrak{p} \leq x, d_{1}(\mathfrak{p})=1$, and E has a good reduction at \mathfrak{p} must be nonnegative. (Here, GRH is not necessary, see [M, page 164-165] for details.)

Let $[K(E[k]): K]=\left|G_{k}\right|$ where G_{k} is the image under the following Galois representation,

$$
\operatorname{Gal}(\bar{K} / K) \longrightarrow \operatorname{Aut}(E[k]) \simeq\left(\mathcal{O}_{K} / k \mathcal{O}_{K}\right)^{*}
$$

As in [FK, Chapter 7], we adopt the same idea in the CM case. We have a homomorphism of groups

$$
\rho: \operatorname{Gal}(\bar{K} / K) \longrightarrow G:=\prod_{l: \text { primes in } K}\left(\mathcal{O}_{K, l}\right)^{*}
$$

There is natural projection $\pi_{k}: G \longrightarrow\left(\mathcal{O}_{K} / k \mathcal{O}_{K}\right)^{*}$ for each k.
Let $\Gamma_{k}=\operatorname{Ker}\left(\pi_{k}\right)$. Then $H:=\rho(\operatorname{Gal}(\bar{K} / K))$ has a finite index in G by Serre's open image theorem. The image of the composition $\pi_{k} \circ \rho$ is isomorphic to G_{k}, hence by the first isomorphism theorem,

$$
H / H \cap \Gamma_{k} \simeq G_{k}
$$

The analogue of the claim in [FK, Chapter 7, page 24] in the CM case, is as follows:
They take m to be the smallest positive integer that $\Gamma_{m}<H$, but m does not have to be the smallest with the property. Instead, we can take $m \in$ $\langle 6 N\rangle:=\{h: p|h \Rightarrow p| 6 N\}$. Write $m=\prod_{p \mid m} p^{m_{p}}, k=\prod_{p \mid k} p^{k_{p}}$.
Claim: If $k_{p} \geq m_{p}$ for some p and $a \geq 1$, then

$$
\left|H / H \cap \Gamma_{p^{a} k}\right|=\left|H / H \cap \Gamma_{k}\right| \cdot\left|\Gamma_{p^{k_{p}}} / \Gamma_{p^{a+k_{p}}}\right|
$$

Moreover, if $k_{p}=0$, we have $\left|\Gamma_{p^{k_{p}}} / \Gamma_{p^{a+k_{p}}}\right|=\left|\Gamma_{1} / \Gamma_{p^{a}}\right|=\Phi\left(p^{a}\right)$, and if $k_{p}>0$, then

$$
\left|\Gamma_{p^{k_{p}}} / \Gamma_{p^{a+k_{p}}}\right|=\left|\Gamma_{p} / \Gamma_{p^{2}}\right|^{a}=p^{2 a}
$$

From this claim, we obtain that

Proposition 4.2. Let $k=h j$ with $h \in\langle m\rangle:=\{h: p|h \Rightarrow p| m\}$, and $(j, m)=1$. Then $\left|G_{k}\right|=\left|G_{h}\right|\left|G_{j}\right|$, and with $h_{1}=(h, m)$, we have

$$
\left|G_{h}\right|=\left|G_{h_{1}}\right| \prod_{\substack{p^{\nu_{p}} \| h \\ \nu_{p}>m_{p}}} p^{2\left(\nu_{p}-m_{p}\right)}
$$

Further, $\left|G_{j}\right|=\Phi(j)$, and hence

$$
\left|G_{k}\right|=\left|G_{h_{1}}\right| \Phi(j) \prod_{\substack{p^{\nu_{p}} \|^{\prime} h \\ \nu_{p}>m_{p}}} p^{2\left(\nu_{p}-m_{p}\right)}
$$

Applying methods shown in [FK, Chapter 7] to CM case, we have
Corollary 4.1. Let E be an elliptic curve that has $C M$ by \mathcal{O}_{K}. Then we have

$$
\sum_{k=1}^{\infty} \frac{\mu(k)}{\left|G_{k}\right|}=\left(\sum_{k \in\langle 6 N\rangle} \frac{\mu(k)}{\left|G_{k}\right|}\right) \prod_{p \nmid 6 N}\left(1-\frac{1}{\Phi(p)}\right)
$$

For $j>1$ with $(j, 6 N)=1$, similar formula holds true,
Corollary 4.2. Let E be an elliptic curve that has $C M$ by \mathcal{O}_{K}. Then we have

$$
\sum_{k=1}^{\infty} \frac{\mu(k)}{[K(E[j k]): K(E[j])]}=\left(\sum_{k \in\langle 6 N\rangle} \frac{\mu(k)}{\left|G_{k}\right|}\right) \prod_{p \nmid 6 N}\left(1-\frac{\Phi(j)}{\Phi(j p)}\right) .
$$

Figure 1. CM Case Illustration
Proof of Corollary 4.2. If $k \in\langle 6 N\rangle$ and $(6 N, n)=1$, then $\left|G_{j k n}\right|=\left|G_{k}\right|\left|G_{j n}\right|$. Thus, $\left|G_{j k n}\right| /\left|G_{j}\right|=\left|G_{k}\right|\left|G_{j n}\right| /\left|G_{j}\right|$. Since Φ is a multiplicative function of ϕ-type, we have $n \mapsto\left|G_{j n}\right| /\left|G_{j}\right|$ is a multiplicative function from positive integers coprime to $6 N$.

These corollaries show that positivity of any one of the constants mentioned, would provide positivity of the other. The LHS of Corollary 4.1 represents the density of prime ideals \mathfrak{p} such that $N \mathfrak{p} \leq x, E$ has a good
reduction at \mathfrak{p}, and $d_{1}(\mathfrak{p})=1$. This density must be positive because of Theorem 4.1, otherwise the number of the prime ideals above would be $O\left(\frac{x}{\log ^{3} x}\right)$ (by taking $A=3$ in $[\mathrm{AM}]$) which contradicts Theorem 4.1.

References

[AM] A. Akbary, K. Murty, Cyclicity of CM Elliptic Curves Mod p, Indian Journal of Pure and Applied Mathematics, 41 (1) (2010), 25-37
[C] A. Cojocaru, Questions About the Reductions Modulo Primes of an Elliptic Curve, Centre de Recherches Mathematiques CRM Proceedings and Lecture Notes Volume 36, 2004
[CM] A. Cojocaru, M. R. Murty, Cyclicity of elliptic curves modulo p and elliptic curve analogues of Linniks problem, Math. Ann. 330, 601.625 (2004)
[D] M. Deuring, Die KlassenKörper der Komplexen Multiplikation, Enz. Math. Wiss., Band 1-2, Heft 10, Teil II. Stuttgart: Teubner 1958.
[FK] T. Freiberg, P. Kurlberg, On the Average Exponent of Elliptic Curves Modulo p, Int Math Res Notices 2013 : rns280v1-29
[GM] R. Gupta, M. R. Murty, Cyclicity and generation of points mod p on elliptic curves, Invent. Math. 101, 225-235, 1990
[K] E. Kowalski, Analytic problems for elliptic curves, J. Ramanujan Math. Soc. 21 (2006), 19-114.
[M] R. Murty, On Artin's Conjecture, Journal of Number Theory, Vol 16, no.2, April 1983
[S] J-P. Serre, Abelian L-Adic Representations and Elliptic Curves, McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute, W. A. Benjamin, Inc., New York-Amsterdam, 1968. MR 0263823
[S2] J-P. Serre, Quelques applications du théorème de densité de Chebotarev, Publications mathématiques de l'I.H.É.S., tome 54(1981), p. 123-201.
[S3] J-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques., Inventiones mathematicae volume 15; pp. 259-331

