TWO REMARKS ON THE LARGEST PRIME FACTORS OF n AND $n+1$

SUNGJIN KIM

Abstract

Let $P(n)$ be the largest prime factor of n. We give an alternative proof of the existence of infinitely many n such that $P(n)>P(n+1)>P(n+2)$. Further, we prove that the set $\{P(n+1) / P(n)\}_{n \in \mathbb{N}}$ has infinitely many limit points $\left\{0, x_{n}, 1, y_{n}\right\}_{n \in \mathbb{N}}$ with $0<x_{n}<1<y_{n}$ and $\lim x_{n}=\lim y_{n}=1$.

1. Introduction

Let $n \geq 2$ be a positive integer. Denote by $P(n)$ the largest prime factor of n. Erdős and Pomerance [EP] proved that the number of $n \leq x$ such that $P(n)<P(n+1)$ is at least $0.0099 x$, and the same holds for $P(n)>P(n+1)$. This lower density 0.0099 is subsequently improved by several authors (0.05544 by de la Bretèche, Pomerance and Tenenbaum [BPT], 0.1063 by Z. Wang [W]). The current record holders are Lü and Wang [LW], who proved that the lower density is at least 0.2017. Erdős and Pomerance [EP] also note that the three patterns $P(n)<P(n+1)>P(n+2), P(n)>P(n+1)<P(n+2)$, and $P(n)<P(n+1)<P(n+2)$ occur infinitely often. They presented a simple proof for the infinitude of the third pattern. Namely, they take

$$
n=p^{2^{m}}-1, n+1=p^{2^{m}}, \text { and } n+2=p^{2^{m}}+1
$$

where p is prime and $m=\inf \left\{k \mid P\left(p^{2^{k}}+1\right)>p\right\}$. They left the infinitude of the fourth pattern $P(n)>$ $P(n+1)>P(n+2)$ as a question. This question was later solved by Balog [B], who showed that the number of occurrence of this pattern for $n \leq x$ is $\gg \sqrt{x}$. Building on earlier results by Matomäki, Radziwilt, and T. Tao [MRT], and Teräväinen [Te], Tao and Teräväinen [TT] proved that the following sets have positive lower density: $\{n \in \mathbb{N} \mid P(n)<P(n+1)<P(n+2)>P(n+3)\}$ and $\{n \in \mathbb{N} \mid P(n)>P(n+1)>$ $P(n+2)<P(n+3)$. Using the Maynard-Tao theorem [Pb], we provide a simple alternative proof of the infinitude of the patterns $P(n)<P(n+1)<P(n+2)$ and $P(n)>P(n+1)>P(n+2)$. We prove that both patterns occur for $\gg x /(\log x)^{50}$ values of $n \leq x$. The result is weaker than Tao and Teräväinen, and stronger than Balog.

Theorem 1.1. For sufficiently large x, we have

$$
\begin{gathered}
\#\{n \leq x \mid P(n)<P(n+1)<P(n+2)\} \gg \frac{x}{(\log x)^{50}} \text { and } \\
\#\{n \leq x \mid P(n)>P(n+1)>P(n+2)\} \gg \frac{x}{(\log x)^{50}} .
\end{gathered}
$$

Erdős and Pomerance [EP, Theorem 1] proved that for any $\epsilon>0$, there is $\delta>0$ such that the number of $n \leq x$ with

$$
x^{-\delta}<\frac{P(n+1)}{P(n)}<x^{\delta}
$$

is less than ϵx. They remarked that this means $P(n)$ and $P(n+1)$ are usually not close. In the opposite direction, we prove that this ratio can approach arbitrarily close to 1 from both sides.

Theorem 1.2. For any $\epsilon>0$, we have

$$
\begin{aligned}
& \#\left\{n \leq x \left\lvert\, 1 \leq \frac{P(n+1)}{P(n)}<1+\epsilon\right.\right\} \ngtr_{\epsilon} \frac{x}{(\log x)^{50}} \text { and } \\
& \#\left\{n \leq x \left\lvert\, 1-\epsilon<\frac{P(n+1)}{P(n)} \leq 1\right.\right\}>_{\epsilon} \frac{x}{(\log x)^{50}} .
\end{aligned}
$$

Let $R:=\left\{\left.\frac{P(n+1)}{P(n)} \right\rvert\, n \in \mathbb{N}\right\}$. As a direct consequence of Theorem 1.2, we obtain that $1 \in \bar{R}$. From the proof of Theorem 1.2, we obtain a finite set $\left\{a_{1}, \ldots, a_{50}\right\} \subseteq \mathbb{N}$ with $1 \leq a_{i}<a_{j}$ for each $1 \leq i<j \leq 50$ such that $a_{j_{1}} / a_{i_{1}} \in \bar{R} \cap(1, \infty)$ for some $1 \leq i_{1}<j_{1} \leq 50$, and $a_{i_{2}} / a_{j_{2}} \in \bar{R} \cap(0,1)$ for some $1 \leq i_{2}<$ $j_{2} \leq 50$. Changing a_{i} with ϵ, we obtain a sequence rational numbers with $0<x_{n}<1<y_{n}$ such that $\lim x_{n}=\lim y_{n}=1$ and $\left\{x_{n}, y_{n}\right\}_{n \in \mathbb{N}} \subseteq \bar{R}$.

In fact, there is an elementary proof of $1 \in \bar{R}$. This elementary proof is based on a solution $(\epsilon=1$ in the following argument) that appeared in Mathematics Stack Exchange [C] by user Barry Cipra. For any $0<\epsilon \leq 1$, take primes p and q satisfying $p<q<(1+\epsilon) p$ so that

$$
\frac{1}{1+\epsilon}<\frac{p}{q}<1<\frac{q}{p}<1+\epsilon .
$$

By Bézout's identity, there are integers u and v with $0<u<q, 0<v<p$ and $p u-q v=1$. Let $U=q-u, V=p-v$. Then $q V-p U=1$. The integers $q u$ and $q V$ have q as the largest prime factor. As $u+U=q<(1+\epsilon) p$, at least one of $u \leq p$ or $U \leq p$ is true. If $u \leq p$ is true, then p is the largest prime factor of $p u$. If $U \leq p$ is true, then also p is the largest prime factor of $p U$. Thus, either one of the following is true:

$$
n=q v, n+1=p u, \frac{P(n+1)}{P(n)}=\frac{p}{q},
$$

or

$$
n=p U, n+1=q V, \frac{P(n+1)}{P(n)}=\frac{q}{p} .
$$

Therefore, $1 \in \bar{R}$ follows. From this argument the number of $n \leq x$ with $\frac{1}{1+\epsilon}<\frac{P(n+1)}{P(n)}<1+\epsilon$ is $>_{\epsilon} x /(\log x)^{2}$. Slightly modifying this argument, we have for any $x \in[1,2]$, either x or $1 / x$ is in \bar{R}. However, this argument does not determine whether a limit point is in $[0,1)$ or $(1, \infty)$.

By Dirichlet's theorem on primes in arithmetic progressions, it is easy to see that 0 is also a limit point of R. For if we take a prime $n=a r-1$, with a large, then $P(n)=a r-1$ and $P(n+1) \leq \max (a, r)$. Assuming the Prime k-tuples conjecture (Conjecture 2.1), we prove that all nonnegative real numbers are limit points of R.

Theorem 1.3 (Conditional). Assuming the Prime k-tuples conjecture (Conjecture 2.1), we have $\bar{R}=$ $[0, \infty)$.

2. Estimates on the Numbers of Prime k-Tuples

A set of k-tuple of linear forms $\left\{a_{1} x+b_{1}, \ldots a_{k} x+b_{k}\right\}$ is said to be admissible if for any prime p there is $x_{p} \in \mathbb{Z}$ such that $p \nmid \prod_{i=1}^{k}\left(a_{i} x_{p}+b_{i}\right)$. We consider the tuples with

$$
\prod_{i} a_{i} \neq 0 \text { and } \prod_{i<j}\left(a_{i} b_{j}-a_{j} b_{i}\right) \neq 0 .
$$

The following is a special case of Bateman-Horn conjecture (a quantitative estimate on Dickson's Prime k-tuples conjecture).
Conjecture 2.1 (Bateman-Horn). Let $k \geq 2$ and $A_{k}=\left\{a_{1} x+b_{1}, \ldots, a_{k} x+b_{k}\right\}$ be an admissible set of linear forms. Then for sufficiently large x, the number $R_{k}(x)$ of $r \leq x$ such that $a_{i} x+b_{i}, 1 \leq i \leq k$ are all prime satisfies

$$
R_{k}(x) \gg_{A_{k}} \frac{x}{(\log x)^{k}} .
$$

Substantial progress toward this conjecture begin with Zhang's result [Z] on bounded gaps in primes. Subsequently, Maynard [M] and Polymath8b ([Pb] led by Tao) improved upon Zhang's result. We state a quantitative form of the Maynard-Tao theorem for admissible sets of linear forms. The proof requires slight modifications of $[\mathrm{Pb}]$ and the stated lower bound can be found in [Pb, Remark 32]. Note that the following is unconditional.

Lemma 2.1 (Maynard-Tao-Polymath8b). Let $A=\left\{a_{1} r+b_{1}, \ldots, a_{50} r+b_{50}\right\}$ be an admissible set of linear forms. Then for sufficiently large x, the number $R(A, x)$ of $r \leq\left(x-\max _{i} b_{i}\right) / \max _{i} a_{i}$ such that at least two of the linear forms are primes satisfies

$$
R(A, x) \ggg>A \frac{x}{(\log x)^{50}}
$$

We will apply the above lemma in the following two special cases.
Case 1. $0<a_{1}<\cdots<a_{k}$ and $b_{i}=1$ for all $i=1, \ldots, k$.
Case 2. $0<a_{1}<\cdots<a_{k}$ and $b_{i}=-1$ for all $i=1, \ldots, k$.
The set of linear forms in these cases is always admissible.

3. The Main Lemma

We construct a special sequence $\left\{a_{i}\right\}$ by the following inductive process.
Lemma 3.1 (The Main Lemma). Let $k \geq 2$ and $e_{k}=1$. For each $0 \leq j \leq k-2$, assume that $\left\{e_{k-j}, \ldots, e_{k}\right\}$ satisfies

$$
\sum_{s<i \leq t} e_{i} \mid \sum_{k-j \leq i \leq s} e_{i} \text { for any } k-j \leq s<t \leq k
$$

Let e_{k-j-1} be a multiple of

$$
\operatorname{LCM}\left\{\sum_{s \leq i \leq t} e_{i} \mid k-j \leq s<t \leq k\right\}
$$

Then $a_{i}=\sum_{m \leq i} e_{m}$ satisfies $0<a_{j}-a_{i} \mid a_{i}$ for each $1 \leq i<j \leq k$.
Proof. The proof is clear from the inductive construction.
We exhibit some sequences $\left\{a_{i}\right\}$ that can be produced by the Main Lemma.
Examples. If $k=2$, then let $\left\{e_{1}, e_{2}\right\}=\{1,1\}$ and $\left\{a_{1}, a_{2}\right\}=\{1,2\}$.
If $k=3$, then let $\left\{e_{1}, e_{2}, e_{3}\right\}=\{2,1,1\}$ and $\left\{a_{1}, a_{2}, a_{3}\right\}=\{2,3,4\}$.
If $k=4$, then let $\left\{e_{1}, e_{2}, e_{3}, e_{4}\right\}=\{12,2,1,1\}$ and $\left\{a_{1}, a_{2}, a_{3}, a_{4}\right\}=\{12,14,15,16\}$.
If $k=5$, then let $\left\{e_{1}, e_{2}, e_{3}, e_{4}, e_{5}\right\}=\{1680,12,2,1,1\}$ and
$\left\{a_{1}, a_{2}, a_{3}, a_{4}, a_{5}\right\}=\{1680,1692,1694,1695,1696\}$.
Note that e_{1} can be made arbitrarily large in the final inductive step. We will use the sequence $\left\{a_{i}\right\}_{1 \leq i \leq 50}$.
Lemma 3.2. Let $\left\{a_{i}\right\}_{1 \leq i \leq 50}$ be a sequence produced in the Main Lemma. That is, $0<a_{j}-a_{i} \mid a_{i}$ for each $1 \leq i<j \leq 50$. Suppose that $a_{i} r+1$ and $a_{j} r+1$ are primes. Then by taking

$$
\begin{equation*}
n=\frac{a_{i}}{a_{j}-a_{i}}\left(a_{j} r+1\right), n+1=\frac{a_{j}}{a_{j}-a_{i}}\left(a_{i} r+1\right), \tag{1}
\end{equation*}
$$

we have for sufficiently large r,

$$
P(n)=a_{j} r+1, \quad P(n+1)=a_{i} r+1 .
$$

Suppose now that $a_{i} r-1$ and $a_{j} r-1$ are primes. Then by taking

$$
\begin{equation*}
n=\frac{a_{j}}{a_{j}-a_{i}}\left(a_{i} r-1\right), n+1=\frac{a_{i}}{a_{j}-a_{i}}\left(a_{j} r-1\right), \tag{2}
\end{equation*}
$$

we have for sufficiently large r,

$$
P(n)=a_{i} r-1, P(n+1)=a_{j} r-1 .
$$

Proof. We take large enough r so that $a_{1} r-1$ exceeds the largest prime factor of $\prod a_{i}$.
Remark. The author recently learned that a sequence $\left\{a_{i}\right\}$ with the property $0<a_{j}-a_{i} \mid a_{i}$ for each $1 \leq i<j$ was obtained earlier by Heath-Brown [Hb, Lemma 1], and such a sequence is used in an unpublished work of Maynard and Ford [F, Theorem 7.18]. Using such a sequence and Lemma 3.2(1), Maynard and Ford proved that there is a constant $B>0$ so that for infinitely many $n, P(n) \geq n / B$ and $P(n+1) \geq(n+1) / B$.

4. Proof of Theorems

4.1. Proof of Theorem 1.1. Let $\left\{a_{i}\right\}_{1 \leq i \leq 50}$ be a sequence produced in the Main Lemma. We apply (1) of Lemma 3.2. By letting $n+2$ divisible by $\frac{a_{j}}{a_{j}-a_{i}}+1$, we obtain $P(n)>P(n+1)>P(n+2)$ for n in (1). For this idea to work, we need to require r to be divisible by $\frac{a_{j}}{a_{j}-a_{i}}+1$ for any choice of $1 \leq i<j \leq 50$. To see this, we let

$$
M=\operatorname{LCM}\left\{\left.\frac{a_{j}}{a_{j}-a_{i}}+1 \right\rvert\, 1 \leq i<j \leq 50\right\} .
$$

Then we work with the admissible set of linear forms $\left\{a_{i} M r+1\right\}_{1 \leq i \leq 50}$. By Lemma 2.1 and the pigeon-hole principle, there is a pair $(i, j), 1 \leq i<j \leq 50$ depending on x such that $a_{i} M r+1$ and $a_{j} M r+1$ are primes for $\gg x /(\log x)^{50}$ values of $r \leq\left(x-a_{50}\right) /\left(a_{50}^{2} M\right)$. For such $r \geq r_{0}$, we have $n=\frac{a_{i}}{a_{j}-a_{i}}\left(a_{j} M r+1\right) \leq x$, $P(n)=a_{j} M r+1, P(n+1)=a_{i} M r+1$, and $P(n+2) \leq(n+2) /\left(\frac{a_{j}}{a_{j}-a_{i}}+1\right)$. Thus, $P(n)>P(n+1)>P(n+2)$ is satisfied for such r.

To obtain an analogous result on $P(n)<P(n+1)<P(n+2)$, we apply (2) of Lemma 3.2. By letting $n-1$ divisible by $\frac{a_{j}}{a_{j}-a_{i}}+1$, we obtain $P(n-1)<P(n)<P(n+1)$ for n in (2). Then we work with the admissible set of linear forms $\left\{a_{i} M r-1\right\}_{1 \leq i \leq 50}$. The rest of the argument is similar to the previous case.
4.2. Proof of Theorem 1.2. Let $\epsilon>0$ be arbitrary. We show that the number of $n \leq x$ with $1-\epsilon<$ $\frac{P(n+1)}{P(n)} \leq 1$ is $>{ }_{\epsilon} \frac{x}{(\log x)^{50}}$. In the inductive process in Lemma 3.1, we let e_{1} be large enough to have

$$
1-\epsilon<\frac{a_{i}}{a_{j}} \leq 1 \text { for each } 1 \leq i<j \leq 50
$$

Then we apply Lemma 3.2(1) to conclude the existence of a pair $(i, j), 1 \leq i<j \leq 50$ depending on x such that $a_{i} r+1$ and $a_{j} r+1$ are primes for $\gg_{\epsilon} x /(\log x)^{50}$ values of $r \leq\left(x-a_{50}\right) / a_{50}^{2}$. It is clear that $\frac{a_{i} r+1}{a_{j} r+1}=\frac{a_{i}}{a_{j}}+\frac{a_{j}-a_{i}}{a_{j}\left(a_{j} r+1\right)}$. Since $P(n)=a_{j} r+1$ and $P(n+1)=a_{i} r+1$ for such r by Lemma 3.2(1), we have

$$
1 \geq \frac{P(n+1)}{P(n)}=\frac{a_{i} r+1}{a_{j} r+1}>\frac{a_{i}}{a_{j}}>1-\epsilon .
$$

The result now follows.
To obtain an analogous result on $1 \leq \frac{P(n+1)}{P(n)}<1+\epsilon$, we apply Lemma 3.2(2).
4.3. Proof of Theorem 1.3. Let a_{1} be an even positive integer, and a_{2} be a positive integer with $\left(a_{1}, a_{2}\right)=$ 1. By Bezout's identity, we can find positive integers b_{1} and b_{2} such that $a_{1} b_{2}-a_{2} b_{1}=\left(a_{1}, a_{2}\right)=1$. The sets of linear forms $\left\{a_{1} r+b_{1}, a_{2} r+b_{2}\right\}$ and $\left\{a_{1} r-b_{1}, a_{2} r-b_{2}\right\}$ are admissible. By Conjecture 2.1, there are infinitely many r such that both of these forms are primes. We take

$$
n=a_{2}\left(a_{1} r+b_{1}\right), n+1=a_{1}\left(a_{2} r+b_{2}\right)
$$

or

$$
n=a_{1}\left(a_{2} r-b_{2}\right), n+1=a_{2}\left(a_{1} r-b_{1}\right) .
$$

If we select r to exceed any prime factor of $a_{1} a_{2}$, then we see in both cases

$$
\left\{\frac{a_{1}}{a_{2}}, \frac{a_{2}}{a_{1}}\right\} \subseteq \bar{R} .
$$

Hence, it follows that any positive rational numbers with numerator and denominator of different parity are limit points of R, and consequently, $\bar{R}=[0, \infty)$.

Acknowledgement. The author thanks Kevin Ford for bringing [Hb], [MRT], and [Te] to his attention. The author also thanks an anonymous referee and Paul Pollack for careful reading of the paper and helpful comments.

References

[B] A. Balog, On Triplets with Descending Largest Prime Factors, Studia Scientiarum Mathematicarum Hungaria, 38(2001), pp 45-50.
[BPT] R. de la Bretèche, C. Pomerance, G. Tenenbaum, Products of Ratios of Consecutive Integers, The Ramanujan Journal, 9(2005), pp 131-138.
[C] B. Cipra, Greatest Prime Divisor of Consecutive Integers, answered and available at https://math.stackexchange.com/ questions/1894873/greatest-prime-divisor-of-consecutive-integers.
[EP] P. Erdős, C. Pomerance, On the Largest Prime Factors of n and $n+1$, Aequationes Mathematicae, 17(1978), pp 311-321.
[F] K. Ford, Sieve Method Lecture Notes, Spring 2020, available at https://faculty.math.illinois.edu/~ford/sieve2020. pdf.
[Hb] D. R. Heath-Brown, The divisor function at consecutive integers, Mathematika 31 (1984), no. 1, pp 141149.
[LW] X. Lü, Z. Wang, On the Largest Prime Factors of Consecutive Integers, preprint.
[M] J. Maynard, Small Gaps Between Primes, Annals of Mathematics, 181(2015), pp 383-413.
[M2] J. Maynard, Dense Clusters of Primes in Subsets, Composito Math. 152(2016), pp 1517-1554.
[MRT] K. Matomäki, M. Radziwilt, T. Tao, Sign Patterns of the Liouville and Möbius Functions, Forum Math. Sigma 4(2016), e14, 44 pages.
[Pb] D. H. J. Polymath, Variants of Selberg Sieve, and Bounded Intervals Containing Many Primes, Research in Mathematical Sciences, 2014(1), pp 1-83.
[Te] J. Teräväinen, On Binary Correlations of Multiplicative Functions, Forum Math. Sigma 6(2018), e10, 41 pages.
[TT] T. Tao, J. Teräväinen, Value Patterns of Multiplicative Functions and Related Sequences, Forum of Mathematics, Sigma (2019), e33, 55 pages.
[W] Z. Wang, On the Largest Prime Factors of Consecutive Integers in Short Intervals, Proceedings of American Mathematical Society, 145(2017), pp 3211-3220.
[Z] Y. Zhang, Bounded Gaps between Primes, Annals of Mathematics, 179(2014), pp 1121-1174.
California State University Northridge, 18111 Nordhoff St, Northridge, CA 91330
Santa Monica College, 1900 Pico Blvd, Santa Monica, CA 90405
E-mail address: 707107 @gmail.com

