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Abstract. Let P (n) be the largest prime factor of n. We give an alternative proof of the existence of
infinitely many n such that P (n) > P (n+1) > P (n+2). Further, we prove that the set {P (n+1)/P (n)}n∈N
has infinitely many limit points {0, xn, 1, yn}n∈N with 0 < xn < 1 < yn and limxn = lim yn = 1.

1. Introduction

Let n ≥ 2 be a positive integer. Denote by P (n) the largest prime factor of n. Erdős and Pomerance [EP]
proved that the number of n ≤ x such that P (n) < P (n + 1) is at least 0.0099x, and the same holds for
P (n) > P (n + 1). This lower density 0.0099 is subsequently improved by several authors (0.05544 by de
la Bretèche, Pomerance and Tenenbaum [BPT], 0.1063 by Z. Wang [W]). The current record holders are
Lü and Wang [LW], who proved that the lower density is at least 0.2017. Erdős and Pomerance [EP]
also note that the three patterns P (n) < P (n + 1) > P (n + 2), P (n) > P (n + 1) < P (n + 2), and
P (n) < P (n+ 1) < P (n+ 2) occur infinitely often. They presented a simple proof for the infinitude of the
third pattern. Namely, they take

n = p2
m − 1, n+ 1 = p2

m
, and n+ 2 = p2

m
+ 1

where p is prime and m = inf{k|P (p2
k

+ 1) > p}. They left the infinitude of the fourth pattern P (n) >
P (n+1) > P (n+2) as a question. This question was later solved by Balog [B], who showed that the number
of occurrence of this pattern for n ≤ x is �

√
x. Building on earlier results by Matomäki, Radziwi l l, and

T. Tao [MRT], and Teräväinen [Te], Tao and Teräväinen [TT] proved that the following sets have positive
lower density: {n ∈ N | P (n) < P (n + 1) < P (n + 2) > P (n + 3)} and {n ∈ N | P (n) > P (n + 1) >
P (n+ 2) < P (n+ 3). Using the Maynard-Tao theorem [Pb], we provide a simple alternative proof of the
infinitude of the patterns P (n) < P (n + 1) < P (n + 2) and P (n) > P (n + 1) > P (n + 2). We prove that
both patterns occur for � x/(log x)50 values of n ≤ x. The result is weaker than Tao and Teräväinen, and
stronger than Balog.

Theorem 1.1. For sufficiently large x, we have

#{n ≤ x | P (n) < P (n+ 1) < P (n+ 2)} � x

(log x)50
and

#{n ≤ x | P (n) > P (n+ 1) > P (n+ 2)} � x

(log x)50
.

Erdős and Pomerance [EP, Theorem 1] proved that for any ε > 0, there is δ > 0 such that the number
of n ≤ x with

x−δ <
P (n+ 1)

P (n)
< xδ

is less than εx. They remarked that this means P (n) and P (n+ 1) are usually not close. In the opposite
direction, we prove that this ratio can approach arbitrarily close to 1 from both sides.

Theorem 1.2. For any ε > 0, we have

#

{
n ≤ x

∣∣∣∣∣1 ≤ P (n+ 1)

P (n)
< 1 + ε

}
�ε

x

(log x)50
and

#

{
n ≤ x

∣∣∣∣∣1− ε < P (n+ 1)

P (n)
≤ 1

}
�ε

x

(log x)50
.
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Let R := {P (n+1)
P (n) | n ∈ N}. As a direct consequence of Theorem 1.2, we obtain that 1 ∈ R. From the

proof of Theorem 1.2, we obtain a finite set {a1, . . . , a50} ⊆ N with 1 ≤ ai < aj for each 1 ≤ i < j ≤ 50

such that aj1/ai1 ∈ R ∩ (1,∞) for some 1 ≤ i1 < j1 ≤ 50, and ai2/aj2 ∈ R ∩ (0, 1) for some 1 ≤ i2 <
j2 ≤ 50. Changing ai with ε, we obtain a sequence rational numbers with 0 < xn < 1 < yn such that
limxn = lim yn = 1 and {xn, yn}n∈N ⊆ R.

In fact, there is an elementary proof of 1 ∈ R. This elementary proof is based on a solution (ε = 1 in
the following argument) that appeared in Mathematics Stack Exchange [C] by user Barry Cipra. For any
0 < ε ≤ 1, take primes p and q satisfying p < q < (1 + ε)p so that

1

1 + ε
<
p

q
< 1 <

q

p
< 1 + ε.

By Bézout’s identity, there are integers u and v with 0 < u < q, 0 < v < p and pu − qv = 1. Let
U = q − u, V = p − v. Then qV − pU = 1. The integers qu and qV have q as the largest prime factor.
As u + U = q < (1 + ε)p, at least one of u ≤ p or U ≤ p is true. If u ≤ p is true, then p is the largest
prime factor of pu. If U ≤ p is true, then also p is the largest prime factor of pU . Thus, either one of the
following is true:

n = qv, n+ 1 = pu,
P (n+ 1)

P (n)
=
p

q
,

or

n = pU, n+ 1 = qV,
P (n+ 1)

P (n)
=
q

p
.

Therefore, 1 ∈ R follows. From this argument the number of n ≤ x with 1
1+ε <

P (n+1)
P (n) < 1 + ε is

�ε x/(log x)2. Slightly modifying this argument, we have for any x ∈ [1, 2], either x or 1/x is in R.
However, this argument does not determine whether a limit point is in [0, 1) or (1,∞).

By Dirichlet’s theorem on primes in arithmetic progressions, it is easy to see that 0 is also a limit point
of R. For if we take a prime n = ar − 1, with a large, then P (n) = ar − 1 and P (n + 1) ≤ max(a, r).
Assuming the Prime k-tuples conjecture (Conjecture 2.1), we prove that all nonnegative real numbers are
limit points of R.

Theorem 1.3 (Conditional). Assuming the Prime k-tuples conjecture (Conjecture 2.1), we have R =
[0,∞).

2. Estimates on the Numbers of Prime k-Tuples

A set of k-tuple of linear forms {a1x+ b1, . . . akx+ bk} is said to be admissible if for any prime p there

is xp ∈ Z such that p -
∏k
i=1(aixp + bi). We consider the tuples with∏

i

ai 6= 0 and
∏
i<j

(aibj − ajbi) 6= 0.

The following is a special case of Bateman-Horn conjecture (a quantitative estimate on Dickson’s Prime
k-tuples conjecture).

Conjecture 2.1 (Bateman-Horn). Let k ≥ 2 and Ak = {a1x + b1, . . . , akx + bk} be an admissible set of
linear forms. Then for sufficiently large x, the number Rk(x) of r ≤ x such that aix+ bi, 1 ≤ i ≤ k are all
prime satisfies

Rk(x)�Ak

x

(log x)k
.

Substantial progress toward this conjecture begin with Zhang’s result [Z] on bounded gaps in primes.
Subsequently, Maynard [M] and Polymath8b ([Pb] led by Tao) improved upon Zhang’s result. We state
a quantitative form of the Maynard-Tao theorem for admissible sets of linear forms. The proof requires
slight modifications of [Pb] and the stated lower bound can be found in [Pb, Remark 32]. Note that the
following is unconditional.
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Lemma 2.1 (Maynard-Tao-Polymath8b). Let A = {a1r+ b1, . . . , a50r+ b50} be an admissible set of linear
forms. Then for sufficiently large x, the number R(A, x) of r ≤ (x − maxi bi)/maxi ai such that at least
two of the linear forms are primes satisfies

R(A, x)�A
x

(log x)50
.

We will apply the above lemma in the following two special cases.

Case 1. 0 < a1 < · · · < ak and bi = 1 for all i = 1, . . . , k.

Case 2. 0 < a1 < · · · < ak and bi = −1 for all i = 1, . . . , k.

The set of linear forms in these cases is always admissible.

3. The Main Lemma

We construct a special sequence {ai} by the following inductive process.

Lemma 3.1 (The Main Lemma). Let k ≥ 2 and ek = 1. For each 0 ≤ j ≤ k−2, assume that {ek−j , . . . , ek}
satisfies ∑

s<i≤t
ei

∣∣∣∣ ∑
k−j≤i≤s

ei for any k − j ≤ s < t ≤ k.

Let ek−j−1 be a multiple of

LCM

∑
s≤i≤t

ei

∣∣∣∣k − j ≤ s < t ≤ k

 .

Then ai =
∑

m≤i em satisfies 0 < aj − ai | ai for each 1 ≤ i < j ≤ k.

Proof. The proof is clear from the inductive construction. �

We exhibit some sequences {ai} that can be produced by the Main Lemma.

Examples. If k = 2, then let {e1, e2} = {1, 1} and {a1, a2} = {1, 2}.

If k = 3, then let {e1, e2, e3} = {2, 1, 1} and {a1, a2, a3} = {2, 3, 4}.

If k = 4, then let {e1, e2, e3, e4} = {12, 2, 1, 1} and {a1, a2, a3, a4} = {12, 14, 15, 16}.

If k = 5, then let {e1, e2, e3, e4, e5} = {1680, 12, 2, 1, 1} and

{a1, a2, a3, a4, a5} = {1680, 1692, 1694, 1695, 1696}.

Note that e1 can be made arbitrarily large in the final inductive step. We will use the sequence {ai}1≤i≤50.

Lemma 3.2. Let {ai}1≤i≤50 be a sequence produced in the Main Lemma. That is, 0 < aj −ai | ai for each
1 ≤ i < j ≤ 50. Suppose that air + 1 and ajr + 1 are primes. Then by taking

(1) n =
ai

aj − ai
(ajr + 1), n+ 1 =

aj
aj − ai

(air + 1),

we have for sufficiently large r,

P (n) = ajr + 1, P (n+ 1) = air + 1.

Suppose now that air − 1 and ajr − 1 are primes. Then by taking

(2) n =
aj

aj − ai
(air − 1), n+ 1 =

ai
aj − ai

(ajr − 1),
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we have for sufficiently large r,

P (n) = air − 1, P (n+ 1) = ajr − 1.

Proof. We take large enough r so that a1r − 1 exceeds the largest prime factor of
∏
ai. �

Remark. The author recently learned that a sequence {ai} with the property 0 < aj − ai | ai for
each 1 ≤ i < j was obtained earlier by Heath-Brown [Hb, Lemma 1], and such a sequence is used in an
unpublished work of Maynard and Ford [F, Theorem 7.18]. Using such a sequence and Lemma 3.2(1),
Maynard and Ford proved that there is a constant B > 0 so that for infinitely many n, P (n) ≥ n/B and
P (n+ 1) ≥ (n+ 1)/B.

4. Proof of Theorems

4.1. Proof of Theorem 1.1. Let {ai}1≤i≤50 be a sequence produced in the Main Lemma. We apply (1)
of Lemma 3.2. By letting n+ 2 divisible by

aj
aj−ai + 1, we obtain P (n) > P (n+ 1) > P (n+ 2) for n in (1).

For this idea to work, we need to require r to be divisible by
aj

aj−ai + 1 for any choice of 1 ≤ i < j ≤ 50.

To see this, we let

M = LCM

{
aj

aj − ai
+ 1

∣∣∣∣ 1 ≤ i < j ≤ 50

}
.

Then we work with the admissible set of linear forms {aiMr+1}1≤i≤50. By Lemma 2.1 and the pigeon-hole
principle, there is a pair (i, j), 1 ≤ i < j ≤ 50 depending on x such that aiMr+ 1 and ajMr+ 1 are primes
for � x/(log x)50 values of r ≤ (x − a50)/(a250M). For such r ≥ r0, we have n = ai

aj−ai (ajMr + 1) ≤ x,

P (n) = ajMr+1, P (n+1) = aiMr+1, and P (n+2) ≤ (n+2)/(
aj

aj−ai +1). Thus, P (n) > P (n+1) > P (n+2)

is satisfied for such r.
To obtain an analogous result on P (n) < P (n+ 1) < P (n+ 2), we apply (2) of Lemma 3.2. By letting

n − 1 divisible by
aj

aj−ai + 1, we obtain P (n − 1) < P (n) < P (n + 1) for n in (2). Then we work with

the admissible set of linear forms {aiMr−1}1≤i≤50. The rest of the argument is similar to the previous case.

4.2. Proof of Theorem 1.2. Let ε > 0 be arbitrary. We show that the number of n ≤ x with 1 − ε <
P (n+1)
P (n) ≤ 1 is �ε

x
(log x)50

. In the inductive process in Lemma 3.1, we let e1 be large enough to have

1− ε < ai
aj
≤ 1 for each 1 ≤ i < j ≤ 50.

Then we apply Lemma 3.2(1) to conclude the existence of a pair (i, j), 1 ≤ i < j ≤ 50 depending on x
such that air + 1 and ajr + 1 are primes for �ε x/(log x)50 values of r ≤ (x − a50)/a250. It is clear that
air+1
ajr+1 = ai

aj
+

aj−ai
aj(ajr+1) . Since P (n) = ajr+ 1 and P (n+ 1) = air+ 1 for such r by Lemma 3.2(1), we have

1 ≥ P (n+ 1)

P (n)
=
air + 1

ajr + 1
>
ai
aj

> 1− ε.

The result now follows.
To obtain an analogous result on 1 ≤ P (n+1)

P (n) < 1 + ε, we apply Lemma 3.2(2).

4.3. Proof of Theorem 1.3. Let a1 be an even positive integer, and a2 be a positive integer with (a1, a2) =
1. By Bezout’s identity, we can find positive integers b1 and b2 such that a1b2 − a2b1 = (a1, a2) = 1. The
sets of linear forms {a1r + b1, a2r + b2} and {a1r − b1, a2r − b2} are admissible. By Conjecture 2.1, there
are infinitely many r such that both of these forms are primes. We take

n = a2(a1r + b1), n+ 1 = a1(a2r + b2)

or
n = a1(a2r − b2), n+ 1 = a2(a1r − b1).

If we select r to exceed any prime factor of a1a2, then we see in both cases{
a1
a2
,
a2
a1

}
⊆ R.
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Hence, it follows that any positive rational numbers with numerator and denominator of different parity
are limit points of R, and consequently, R = [0,∞).
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