TWO REMARKS ON THE LARGEST PRIME FACTORS OF n AND n+1

SUNGJIN KIM

ABSTRACT. Let P(n) be the largest prime factor of n. We give an alternative proof of the existence of
infinitely many n such that P(n) > P(n+1) > P(n+2). Further, we prove that the set {P(n+1)/P(n)}nen
has infinitely many limit points {0, zn, 1, Yn }neny with 0 < z, < 1 < y,, and limz,, = limy, = 1.

1. INTRODUCTION

Let n > 2 be a positive integer. Denote by P(n) the largest prime factor of n. Erdés and Pomerance [EP]
proved that the number of n < z such that P(n) < P(n + 1) is at least 0.0099z, and the same holds for
P(n) > P(n+1). This lower density 0.0099 is subsequently improved by several authors (0.05544 by de
la Breteche, Pomerance and Tenenbaum [BPT], 0.1063 by Z. Wang [W]). The current record holders are
Li and Wang [LW], who proved that the lower density is at least 0.2017. Erdés and Pomerance [EP]
also note that the three patterns P(n) < P(n+1) > P(n+2), P(n) > P(n+ 1) < P(n + 2), and
P(n) < P(n+1) < P(n+ 2) occur infinitely often. They presented a simple proof for the infinitude of the
third pattern. Namely, they take

n=p*" =1, n+1=p"", and n+2=p>" +1

where p is prime and m = inf{k|P(p?" + 1) > p}. They left the infinitude of the fourth pattern P(n) >
P(n+1) > P(n+2) as a question. This question was later solved by Balog [B], who showed that the number
of occurrence of this pattern for n < x is > /x. Building on earlier results by Matoméki, Radziwilt, and
T. Tao [MRT], and Terévéinen [Te], Tao and Terdvéinen [TT] proved that the following sets have positive
lower density: {n € N| P(n) < P(n+1) < Pn+2) > P(n+3)}and {n € N| P(n) > P(n+1) >
P(n +2) < P(n+ 3). Using the Maynard-Tao theorem [Pb], we provide a simple alternative proof of the
infinitude of the patterns P(n) < P(n+1) < P(n+2) and P(n) > P(n+1) > P(n+ 2). We prove that
both patterns occur for > x/(log x)*° values of n < z. The result is weaker than Tao and Teriviinen, and
stronger than Balog.

Theorem 1.1. For sufficiently large x, we have

#{ngx|P(n)<P(n+1)<P(n+2)}>>mand

#{n<u| P(n)>P(n+1)>P(n+2)}>>m.

Erdds and Pomerance [EP, Theorem 1] proved that for any € > 0, there is § > 0 such that the number
of n < x with
IZ‘_(S < M < ZZ‘(S
P(n)
is less than ex. They remarked that this means P(n) and P(n + 1) are usually not close. In the opposite
direction, we prove that this ratio can approach arbitrarily close to 1 from both sides.

Theorem 1.2. For any € > 0, we have

Pn+1)
#{ngx 1< jg(n) <1+6}>>6(10g2)50and
Pn+1) T

#{nﬁx

nil <1 >
P(n) — [~ (logz)’
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Let R := {PI(!ZI)D | n € N}. As a direct consequence of Theorem 1.2, we obtain that 1 € R. From the
proof of Theorem 1.2, we obtain a finite set {a1,...,a50} € N with 1 < a; < a; for each 1 <1i < j <50
such that aj, /a;, € RN (1,00) for some 1 < iy < j; < 50, and a;,/aj, € RN (0,1) for some 1 < iy <
J2 < 50. Changing a; with €, we obtain a sequence rational numbers with 0 < z, < 1 < y, such that
limz, = limy, = 1 and {Z,, Yn }nen C R.

In fact, there is an elementary proof of 1 € R. This elementary proof is based on a solution (¢ = 1 in
the following argument) that appeared in Mathematics Stack Exchange [C] by user Barry Cipra. For any
0 < e <1, take primes p and ¢ satisfying p < ¢ < (1 + €)p so that

! <B<1<g<1+6.
1+e ¢ P
By Bézout’s identity, there are integers v and v with 0 < u < ¢, 0 < v < p and pu —qu = 1. Let
U=q—u, V=p—wv. Then qV — pU = 1. The integers qu and gV have ¢ as the largest prime factor.
Asu+U =q < (14 ¢€)p, at least one of u < p or U < p is true. If u < p is true, then p is the largest
prime factor of pu. If U < p is true, then also p is the largest prime factor of pU. Thus, either one of the
following is true:

Pin+1) »p
n=qu, n+1=pu, ——> ==,
P(n) q
or
Pn+1) ¢
n=pU, n+1=qV, ———— = =.
P) p
Therefore, 1 € R follows. From this argument the number of n < z with %JFE < sz:)l) < l+4eis

>. x/(logz)?. Slightly modifying this argument, we have for any x € [1,2], either z or 1/x is in R.
However, this argument does not determine whether a limit point is in [0,1) or (1, c0).

By Dirichlet’s theorem on primes in arithmetic progressions, it is easy to see that 0 is also a limit point
of R. For if we take a prime n = ar — 1, with a large, then P(n) = ar — 1 and P(n + 1) < max(a,r).
Assuming the Prime k-tuples conjecture (Conjecture 2.1), we prove that all nonnegative real numbers are
limit points of R.

Theorem 1.3 (Conditional). Assuming the Prime k-tuples conjecture (Conjecture 2.1), we have R =
[0, 00).

2. ESTIMATES ON THE NUMBERS OF PRIME k-TUPLES

A set of k-tuple of linear forms {ajz + b1, ...arz + b} is said to be admissible if for any prime p there
is ), € Z such that pt Hle(aimp + b;). We consider the tuples with

Hai 75 0 and H(aib]’ - ajbi) 75 0.
i i<j
The following is a special case of Bateman-Horn conjecture (a quantitative estimate on Dickson’s Prime
k-tuples conjecture).

Conjecture 2.1 (Bateman-Horn). Let k > 2 and Ay = {a1x + by,...,axx + bi} be an admissible set of
linear forms. Then for sufficiently large x, the number Ry(x) of r < x such that a;x +b;, 1 < i < k are all
prime satisfies
x
R —.
b() >, (log z)k
Substantial progress toward this conjecture begin with Zhang’s result [Z] on bounded gaps in primes.
Subsequently, Maynard [M] and Polymath8b ([Pb] led by Tao) improved upon Zhang’s result. We state
a quantitative form of the Maynard-Tao theorem for admissible sets of linear forms. The proof requires
slight modifications of [Pb] and the stated lower bound can be found in [Pb, Remark 32]. Note that the
following is unconditional.
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Lemma 2.1 (Maynard-Tao-Polymath8b). Let A = {a1r+b1,...,as0r +bso} be an admissible set of linear
forms. Then for sufficiently large x, the number R(A,x) of r < (x — max; b;)/ max; a; such that at least
two of the linear forms are primes satisfies

x

R(A —_—.
(A,) >4 (log x)0

We will apply the above lemma in the following two special cases.

Casel. 0<ay1 < ---<apandb;=1foralli=1,..., k.

Case 2. 0<a; < ---<apand b=—1forallt=1,... k.

The set of linear forms in these cases is always admissible.

3. THE MAIN LEMMA
We construct a special sequence {a;} by the following inductive process.

Lemma 3.1 (The Main Lemma). Let k > 2 and e, = 1. For each 0 < j < k—2, assume that {ex_;, ..., ex}

satisfies
D> e

s<i<t

Z e; forany k—j<s<t<k.
k—j<i<s

Let ep_;_1 be a multiple of

LCM Z e;

s<i<t

Then a; =), <; em satisfies 0 < a; —a; | a; for each 1 <i < j <k.

k—7j<s<t<k

Proof. The proof is clear from the inductive construction. O

We exhibit some sequences {a;} that can be produced by the Main Lemma.
Examples. If k = 2, then let {ej,ea} = {1,1} and {a1, a2} = {1,2}.

If k = 3, then let {e1,eq,e3} ={2,1,1} and {a1,a2,a3} = {2,3,4}.

If k =4, then let {e,eq,e3,e4} = {12,2,1,1} and {a1, a9, as,as} = {12,14,15,16}.
If k =5, then let {ey,ea,e3,e4,e5} = {1680,12,2,1,1} and

{a1,a2,as3,a4,a5} = {1680, 1692, 1694, 1695, 1696 }.

Note that e; can be made arbitrarily large in the final inductive step. We will use the sequence {a; }1<i<50.

Lemma 3.2. Let {a;}1<i<50 be a sequence produced in the Main Lemma. That is, 0 < aj —a; | a; for each
1 <1< j<50. Suppose that a;r + 1 and a;r + 1 are primes. Then by taking

a; @
1 = v+ 1 1= ir+ 1
(1) N gt n = o (ar + ),

we have for sufficiently large r,
P(n)=ar+1, P(n+1) =a;r +1.
Suppose now that a;r — 1 and ajr — 1 are primes. Then by taking

e n=—

(air—1), n+1=

ajr—1
aj—ai aj—ai(] )7
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we have for sufficiently large r,
P(n)=amr—1, P(n+1) =ajr—1.
Proof. We take large enough r so that a;r — 1 exceeds the largest prime factor of [] a;. O

Remark. The author recently learned that a sequence {a;} with the property 0 < a; — a; | a; for
each 1 < ¢ < j was obtained earlier by Heath-Brown [Hb, Lemma 1], and such a sequence is used in an
unpublished work of Maynard and Ford [F, Theorem 7.18]. Using such a sequence and Lemma 3.2(1),
Maynard and Ford proved that there is a constant B > 0 so that for infinitely many n, P(n) > n/B and
P(n+1)> (n+1)/B.

4. PROOF OF THEOREMS

4.1. Proof of Theorem 1.1. Let {ai}lgigg)o be a sequence produced in the Main Lemma. We apply (1)
of Lemma 3.2. By : ( ) > P(n+1) > P(n+2) for nin (1).

For this idea to work, we need to require r to be d1V151ble by -+1 for any choice of 1 <4 < 5 < 50.

To see this, we let

M:LCM{ +1'1§7j<j§50}.

CL]‘ — a;

Then we work with the admissible set of linear forms {a; Mr+1}1<i<50. By Lemma 2.1 and the pigeon-hole
principle, there is a pair (4, 7), 1 <14 < j < 50 depending on « such that a;Mr+1 and a;Mr+ 1 are primes

for > z/(log x)® values of r < (z — aso)/(a2,M). For such r > rg, we have n = a]CEai (a;Mr+1) <z
P(n) =a;Mr+1, P(n+1) = a;Mr+1, and P(n+2) < (n—|—2)/( Z-+1). Thus, P(n) > P(n+1) > P(n+2)
is satisfied for such r.

To obtain an analogous result on P( ) < P(n+1) < P(n+2), we apply (2) of Lemma 3.2. By letting
(n—1) < P(n) < P(n+1) for n in (2). Then we work with

the admissible set of hnear forms {aiMr—1}1<i<s0. The rest of the argument is similar to the previous case.

4.2. Proof of Theorem 1.2. Let € > 0 be arbitrary. We show that the number of n < z with 1 — e <

P(n+1) .
Py <118 e g

. In the inductive process in Lemma 3.1, we let e; be large enough to have

1—e<® <1 foreach 1<i<j <50
a;
Then we apply Lemma 3.2(1) to conclude the existence of a pair (i,7), 1 < i < j < 50 depending on x
such that a;r + 1 and a;r + 1 are primes for >, x/(logz)°® values of r < (z — aso)/a?,. It is clear that

3;7:& = g; + % Since P(n) = a;r +1 and P(n+ 1) = a;r + 1 for such r by Lemma 3.2(1), we have

12P(n—|—1):air+1 >&>1—e
P(n) ajr+1

The result now follows.
To obtain an analogous result on 1 < 1(3( 3 D 14 €, we apply Lemma 3.2(2).

4.3. Proof of Theorem 1.3. Let a; be an even positive integer, and ag be a positive integer with (a;, as) =
1. By Bezout’s identity, we can find positive integers b; and by such that a1by — a2b; = (a1,a2) = 1. The
sets of linear forms {a1r + b1, aor + be} and {a;r — by, agr — by} are admissible. By Conjecture 2.1, there
are infinitely many r such that both of these forms are primes. We take

n = as(a1r +by), n+1 = ay(azr + bo)

or
n = aj(agr — be), n+1=as(a;r — by).
If we select r to exceed any prime factor of ajas, then we see in both cases
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Hence, it follows that any positive rational numbers with numerator and denominator of different parity

are limit points of R, and consequently, R = [0, c0).
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