TWO REMARKS ON THE LARGEST PRIME FACTORS OF n AND n+1

SUNGJIN KIM

ABSTRACT. Let P(n) be the largest prime factor of n. We give an alternative proof of the existence of infinitely many n such that P(n) > P(n+1) > P(n+2). Further, we prove that the set $\{P(n+1)/P(n)\}_{n \in \mathbb{N}}$ has infinitely many limit points $\{0, x_n, 1, y_n\}_{n \in \mathbb{N}}$ with $0 < x_n < 1 < y_n$ and $\lim x_n = \lim y_n = 1$.

1. INTRODUCTION

Let $n \ge 2$ be a positive integer. Denote by P(n) the largest prime factor of n. Erdős and Pomerance [EP] proved that the number of $n \le x$ such that P(n) < P(n+1) is at least 0.0099x, and the same holds for P(n) > P(n+1). This lower density 0.0099 is subsequently improved by several authors (0.05544 by de la Bretèche, Pomerance and Tenenbaum [BPT], 0.1063 by Z. Wang [W]). The current record holders are Lü and Wang [LW], who proved that the lower density is at least 0.2017. Erdős and Pomerance [EP] also note that the three patterns P(n) < P(n+1) > P(n+2), P(n) > P(n+1) < P(n+2), and P(n) < P(n+1) < P(n+2) occur infinitely often. They presented a simple proof for the infinitude of the third pattern. Namely, they take

$$n = p^{2^m} - 1$$
, $n + 1 = p^{2^m}$, and $n + 2 = p^{2^m} + 1$

where p is prime and $m = \inf\{k | P(p^{2^k} + 1) > p\}$. They left the infinitude of the fourth pattern P(n) > P(n+1) > P(n+2) as a question. This question was later solved by Balog [B], who showed that the number of occurrence of this pattern for $n \le x$ is $\gg \sqrt{x}$. Building on earlier results by Matomäki, Radziwiłł, and T. Tao [MRT], and Teräväinen [Te], Tao and Teräväinen [TT] proved that the following sets have positive lower density: $\{n \in \mathbb{N} \mid P(n) < P(n+1) < P(n+2) > P(n+3)\}$ and $\{n \in \mathbb{N} \mid P(n) > P(n+1) > P(n+2) < P(n+3)\}$. Using the Maynard-Tao theorem [Pb], we provide a simple alternative proof of the infinitude of the patterns P(n) < P(n+1) < P(n+2) and P(n) > P(n+1) > P(n+2). We prove that both patterns occur for $\gg x/(\log x)^{50}$ values of $n \le x$. The result is weaker than Tao and Teräväinen, and stronger than Balog.

Theorem 1.1. For sufficiently large x, we have

$$#\{n \le x \mid P(n) < P(n+1) < P(n+2)\} \gg \frac{x}{(\log x)^{50}} \text{ and} \\ #\{n \le x \mid P(n) > P(n+1) > P(n+2)\} \gg \frac{x}{(\log x)^{50}}.$$

Erdős and Pomerance [EP, Theorem 1] proved that for any $\epsilon > 0$, there is $\delta > 0$ such that the number of $n \leq x$ with

$$x^{-\delta} < \frac{P(n+1)}{P(n)} < x^{\delta}$$

is less than ϵx . They remarked that this means P(n) and P(n+1) are usually not close. In the opposite direction, we prove that this ratio can approach arbitrarily close to 1 from both sides.

Theorem 1.2. For any $\epsilon > 0$, we have

$$\#\left\{n \le x \left| 1 \le \frac{P(n+1)}{P(n)} < 1 + \epsilon\right\} \gg_{\epsilon} \frac{x}{(\log x)^{50}} \text{ and} \right.$$
$$\#\left\{n \le x \left| 1 - \epsilon < \frac{P(n+1)}{P(n)} \le 1\right\} \gg_{\epsilon} \frac{x}{(\log x)^{50}}.$$

Let $R := \{\frac{P(n+1)}{P(n)} \mid n \in \mathbb{N}\}$. As a direct consequence of Theorem 1.2, we obtain that $1 \in \overline{R}$. From the proof of Theorem 1.2, we obtain a finite set $\{a_1, \ldots, a_{50}\} \subseteq \mathbb{N}$ with $1 \leq a_i < a_j$ for each $1 \leq i < j \leq 50$ such that $a_{j_1}/a_{i_1} \in \overline{R} \cap (1, \infty)$ for some $1 \leq i_1 < j_1 \leq 50$, and $a_{i_2}/a_{j_2} \in \overline{R} \cap (0, 1)$ for some $1 \leq i_2 < j_2 \leq 50$. Changing a_i with ϵ , we obtain a sequence rational numbers with $0 < x_n < 1 < y_n$ such that $\lim x_n = \lim y_n = 1$ and $\{x_n, y_n\}_{n \in \mathbb{N}} \subseteq \overline{R}$.

In fact, there is an elementary proof of $1 \in \overline{R}$. This elementary proof is based on a solution ($\epsilon = 1$ in the following argument) that appeared in Mathematics Stack Exchange [C] by user Barry Cipra. For any $0 < \epsilon \leq 1$, take primes p and q satisfying $p < q < (1 + \epsilon)p$ so that

$$\frac{1}{1+\epsilon} < \frac{p}{q} < 1 < \frac{q}{p} < 1 + \epsilon.$$

By Bézout's identity, there are integers u and v with 0 < u < q, 0 < v < p and pu - qv = 1. Let U = q - u, V = p - v. Then qV - pU = 1. The integers qu and qV have q as the largest prime factor. As $u + U = q < (1 + \epsilon)p$, at least one of $u \le p$ or $U \le p$ is true. If $u \le p$ is true, then p is the largest prime factor of pu. If $U \le p$ is true, then also p is the largest prime factor of pU. Thus, either one of the following is true:

$$n = qv, \ n+1 = pu, \ \frac{P(n+1)}{P(n)} = \frac{p}{q}$$

or

$$n = pU, \ n + 1 = qV, \ \frac{P(n+1)}{P(n)} = \frac{q}{p}$$

Therefore, $1 \in \overline{R}$ follows. From this argument the number of $n \leq x$ with $\frac{1}{1+\epsilon} < \frac{P(n+1)}{P(n)} < 1 + \epsilon$ is $\gg_{\epsilon} x/(\log x)^2$. Slightly modifying this argument, we have for any $x \in [1,2]$, either x or 1/x is in \overline{R} . However, this argument does not determine whether a limit point is in [0,1) or $(1,\infty)$.

By Dirichlet's theorem on primes in arithmetic progressions, it is easy to see that 0 is also a limit point of R. For if we take a prime n = ar - 1, with a large, then P(n) = ar - 1 and $P(n + 1) \leq \max(a, r)$. Assuming the Prime k-tuples conjecture (Conjecture 2.1), we prove that all nonnegative real numbers are limit points of R.

Theorem 1.3 (Conditional). Assuming the Prime k-tuples conjecture (Conjecture 2.1), we have $\overline{R} = [0, \infty)$.

2. Estimates on the Numbers of Prime k-Tuples

A set of k-tuple of linear forms $\{a_1x + b_1, \dots, a_kx + b_k\}$ is said to be *admissible* if for any prime p there is $x_p \in \mathbb{Z}$ such that $p \nmid \prod_{i=1}^k (a_i x_p + b_i)$. We consider the tuples with

$$\prod_{i} a_i \neq 0 \text{ and } \prod_{i < j} (a_i b_j - a_j b_i) \neq 0.$$

The following is a special case of Bateman-Horn conjecture (a quantitative estimate on Dickson's Prime k-tuples conjecture).

Conjecture 2.1 (Bateman-Horn). Let $k \ge 2$ and $A_k = \{a_1x + b_1, \ldots, a_kx + b_k\}$ be an admissible set of linear forms. Then for sufficiently large x, the number $R_k(x)$ of $r \le x$ such that $a_ix + b_i$, $1 \le i \le k$ are all prime satisfies

$$R_k(x) \gg_{A_k} \frac{x}{(\log x)^k}.$$

Substantial progress toward this conjecture begin with Zhang's result [Z] on bounded gaps in primes. Subsequently, Maynard [M] and Polymath8b ([Pb] led by Tao) improved upon Zhang's result. We state a quantitative form of the Maynard-Tao theorem for admissible sets of linear forms. The proof requires slight modifications of [Pb] and the stated lower bound can be found in [Pb, Remark 32]. Note that the following is unconditional. **Lemma 2.1** (Maynard-Tao-Polymath8b). Let $A = \{a_1r + b_1, \ldots, a_{50}r + b_{50}\}$ be an admissible set of linear forms. Then for sufficiently large x, the number R(A, x) of $r \leq (x - \max_i b_i) / \max_i a_i$ such that at least two of the linear forms are primes satisfies

$$R(A, x) \gg_A \frac{x}{(\log x)^{50}}.$$

We will apply the above lemma in the following two special cases.

Case 1. $0 < a_1 < \cdots < a_k$ and $b_i = 1$ for all i = 1, ..., k.

Case 2. $0 < a_1 < \cdots < a_k$ and $b_i = -1$ for all $i = 1, \dots, k$.

The set of linear forms in these cases is always admissible.

3. The Main Lemma

We construct a special sequence $\{a_i\}$ by the following inductive process.

Lemma 3.1 (The Main Lemma). Let $k \ge 2$ and $e_k = 1$. For each $0 \le j \le k-2$, assume that $\{e_{k-j}, \ldots, e_k\}$ satisfies

$$\sum_{s < i \le t} e_i \mid \sum_{k-j \le i \le s} e_i \text{ for any } k-j \le s < t \le k.$$

Let e_{k-j-1} be a multiple of

$$\operatorname{LCM}\left\{\sum_{s \le i \le t} e_i \left| k - j \le s < t \le k\right\}\right\}.$$

Then $a_i = \sum_{m \le i} e_m$ satisfies $0 < a_j - a_i \mid a_i$ for each $1 \le i < j \le k$.

Proof. The proof is clear from the inductive construction.

We exhibit some sequences $\{a_i\}$ that can be produced by the Main Lemma.

Examples. If k = 2, then let $\{e_1, e_2\} = \{1, 1\}$ and $\{a_1, a_2\} = \{1, 2\}$.

If k = 3, then let $\{e_1, e_2, e_3\} = \{2, 1, 1\}$ and $\{a_1, a_2, a_3\} = \{2, 3, 4\}$.

If
$$k = 4$$
, then let $\{e_1, e_2, e_3, e_4\} = \{12, 2, 1, 1\}$ and $\{a_1, a_2, a_3, a_4\} = \{12, 14, 15, 16\}$.

If k = 5, then let $\{e_1, e_2, e_3, e_4, e_5\} = \{1680, 12, 2, 1, 1\}$ and

 ${a_1, a_2, a_3, a_4, a_5} = {1680, 1692, 1694, 1695, 1696}.$

Note that e_1 can be made arbitrarily large in the final inductive step. We will use the sequence $\{a_i\}_{1 \le i \le 50}$.

Lemma 3.2. Let $\{a_i\}_{1 \le i \le 50}$ be a sequence produced in the Main Lemma. That is, $0 < a_j - a_i \mid a_i$ for each $1 \le i < j \le 50$. Suppose that $a_ir + 1$ and $a_jr + 1$ are primes. Then by taking

(1)
$$n = \frac{a_i}{a_j - a_i}(a_j r + 1), \ n + 1 = \frac{a_j}{a_j - a_i}(a_i r + 1),$$

we have for sufficiently large r,

 $P(n) = a_j r + 1, \ P(n+1) = a_i r + 1.$

Suppose now that $a_ir - 1$ and $a_jr - 1$ are primes. Then by taking

(2)
$$n = \frac{a_j}{a_j - a_i}(a_i r - 1), \ n + 1 = \frac{a_i}{a_j - a_i}(a_j r - 1),$$

we have for sufficiently large r,

$$P(n) = a_i r - 1, \ P(n+1) = a_i r - 1.$$

Proof. We take large enough r so that $a_1r - 1$ exceeds the largest prime factor of $\prod a_i$.

Remark. The author recently learned that a sequence $\{a_i\}$ with the property $0 < a_j - a_i \mid a_i$ for each $1 \leq i < j$ was obtained earlier by Heath-Brown [Hb, Lemma 1], and such a sequence is used in an unpublished work of Maynard and Ford [F, Theorem 7.18]. Using such a sequence and Lemma 3.2(1), Maynard and Ford proved that there is a constant B > 0 so that for infinitely many n, $P(n) \geq n/B$ and $P(n+1) \geq (n+1)/B$.

4. Proof of Theorems

4.1. **Proof of Theorem 1.1.** Let $\{a_i\}_{1 \le i \le 50}$ be a sequence produced in the Main Lemma. We apply (1) of Lemma 3.2. By letting n + 2 divisible by $\frac{a_j}{a_j - a_i} + 1$, we obtain P(n) > P(n+1) > P(n+2) for n in (1). For this idea to work, we need to require r to be divisible by $\frac{a_j}{a_j - a_i} + 1$ for any choice of $1 \le i < j \le 50$. To see this, we let

$$M = \operatorname{LCM}\left\{\frac{a_j}{a_j - a_i} + 1 \mid 1 \le i < j \le 50\right\}$$

Then we work with the admissible set of linear forms $\{a_iMr+1\}_{1\leq i\leq 50}$. By Lemma 2.1 and the pigeon-hole principle, there is a pair $(i, j), 1 \leq i < j \leq 50$ depending on x such that a_iMr+1 and a_jMr+1 are primes for $\gg x/(\log x)^{50}$ values of $r \leq (x - a_{50})/(a_{50}^2M)$. For such $r \geq r_0$, we have $n = \frac{a_i}{a_j - a_i}(a_jMr+1) \leq x$, $P(n) = a_jMr+1, P(n+1) = a_iMr+1$, and $P(n+2) \leq (n+2)/(\frac{a_j}{a_j - a_i}+1)$. Thus, P(n) > P(n+1) > P(n+2) is satisfied for such r.

To obtain an analogous result on P(n) < P(n+1) < P(n+2), we apply (2) of Lemma 3.2. By letting n-1 divisible by $\frac{a_j}{a_j-a_i} + 1$, we obtain P(n-1) < P(n) < P(n+1) for n in (2). Then we work with the admissible set of linear forms $\{a_iMr-1\}_{1 \le i \le 50}$. The rest of the argument is similar to the previous case.

4.2. Proof of Theorem 1.2. Let $\epsilon > 0$ be arbitrary. We show that the number of $n \leq x$ with $1 - \epsilon < \frac{P(n+1)}{P(n)} \leq 1$ is $\gg_{\epsilon} \frac{x}{(\log x)^{50}}$. In the inductive process in Lemma 3.1, we let e_1 be large enough to have

$$1 - \epsilon < \frac{a_i}{a_j} \le 1$$
 for each $1 \le i < j \le 50$.

Then we apply Lemma 3.2(1) to conclude the existence of a pair (i, j), $1 \le i < j \le 50$ depending on x such that $a_ir + 1$ and $a_jr + 1$ are primes for $\gg_{\epsilon} x/(\log x)^{50}$ values of $r \le (x - a_{50})/a_{50}^2$. It is clear that $\frac{a_ir+1}{a_jr+1} = \frac{a_i}{a_j} + \frac{a_j-a_i}{a_j(a_jr+1)}$. Since $P(n) = a_jr + 1$ and $P(n+1) = a_ir + 1$ for such r by Lemma 3.2(1), we have

$$1 \ge \frac{P(n+1)}{P(n)} = \frac{a_i r + 1}{a_j r + 1} > \frac{a_i}{a_j} > 1 - \epsilon.$$

The result now follows.

To obtain an analogous result on $1 \le \frac{P(n+1)}{P(n)} < 1 + \epsilon$, we apply Lemma 3.2(2).

4.3. **Proof of Theorem 1.3.** Let a_1 be an even positive integer, and a_2 be a positive integer with $(a_1, a_2) = 1$. By Bezout's identity, we can find positive integers b_1 and b_2 such that $a_1b_2 - a_2b_1 = (a_1, a_2) = 1$. The sets of linear forms $\{a_1r + b_1, a_2r + b_2\}$ and $\{a_1r - b_1, a_2r - b_2\}$ are admissible. By Conjecture 2.1, there are infinitely many r such that both of these forms are primes. We take

$$n = a_2(a_1r + b_1), n + 1 = a_1(a_2r + b_2)$$

or

$$n = a_1(a_2r - b_2), n + 1 = a_2(a_1r - b_1)$$

If we select r to exceed any prime factor of a_1a_2 , then we see in both cases

$$\left\{\frac{a_1}{a_2}, \frac{a_2}{a_1}\right\} \subseteq \overline{R}.$$

Hence, it follows that any positive rational numbers with numerator and denominator of different parity are limit points of R, and consequently, $\overline{R} = [0, \infty)$.

Acknowledgement. The author thanks Kevin Ford for bringing [Hb], [MRT], and [Te] to his attention. The author also thanks an anonymous referee and Paul Pollack for careful reading of the paper and helpful comments.

References

- [B] A. Balog, On Triplets with Descending Largest Prime Factors, Studia Scientiarum Mathematicarum Hungaria, 38(2001), pp 45-50.
- [BPT] R. de la Bretèche, C. Pomerance, G. Tenenbaum, Products of Ratios of Consecutive Integers, The Ramanujan Journal, 9(2005), pp 131-138.
- [C] B. Cipra, Greatest Prime Divisor of Consecutive Integers, answered and available at https://math.stackexchange.com/ questions/1894873/greatest-prime-divisor-of-consecutive-integers.
- [EP] P. Erdős, C. Pomerance, On the Largest Prime Factors of n and n+1, Aequationes Mathematicae, 17(1978), pp 311-321.
- [F] K. Ford, Sieve Method Lecture Notes, Spring 2020, available at https://faculty.math.illinois.edu/~ford/sieve2020. pdf.
- [Hb] D. R. Heath-Brown, The divisor function at consecutive integers, Mathematika 31 (1984), no. 1, pp 141149.
- [LW] X. Lü, Z. Wang, On the Largest Prime Factors of Consecutive Integers, preprint.
- [M] J. Maynard, Small Gaps Between Primes, Annals of Mathematics, 181(2015), pp 383-413.
- [M2] J. Maynard, Dense Clusters of Primes in Subsets, Composito Math. 152(2016), pp 1517-1554.
- [MRT] K. Matomäki, M. Radziwiłł, T. Tao, Sign Patterns of the Liouville and Möbius Functions, Forum Math. Sigma 4(2016), e14, 44 pages.
- [Pb] D. H. J. Polymath, Variants of Selberg Sieve, and Bounded Intervals Containing Many Primes, Research in Mathematical Sciences, 2014(1), pp 1-83.
- [Te] J. Teräväinen, On Binary Correlations of Multiplicative Functions, Forum Math. Sigma 6(2018), e10, 41 pages.
- [TT] T. Tao, J. Teräväinen, Value Patterns of Multiplicative Functions and Related Sequences, Forum of Mathematics, Sigma (2019), e33, 55 pages.
- [W] Z. Wang, On the Largest Prime Factors of Consecutive Integers in Short Intervals, Proceedings of American Mathematical Society, 145(2017), pp 3211-3220.
- [Z] Y. Zhang, Bounded Gaps between Primes, Annals of Mathematics, 179(2014), pp 1121-1174.

CALIFORNIA STATE UNIVERSITY NORTHRIDGE, 18111 NORDHOFF ST, NORTHRIDGE, CA 91330

SANTA MONICA COLLEGE, 1900 PICO BLVD, SANTA MONICA, CA 90405 E-mail address: 707107@gmail.com