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ABSTRACT. Let a > 1 be an integer. Denote by l,(p) the multiplicative order of @ modulo primes p. We

prove that if m = O( ) then

z
=1 log 1 1 _
ogz + Cloglogx + O(1) + O (yloglogaz)’
a<yp<r

which is an improvement over a theorem by Felix [Fe]. Additionally, we also prove two other related average
results.

1. INTRODUCTION

Throughout this paper, we use the letter p to denote prime numbers. Let a > 1 be an integer. If p does
not divide a, we denote the multiplicative order of a modulo p by I,(p). Artin’s Conjecture on Primitive
Roots (AC) states that l,(p) = p—1 for a positive proportion of primes p where the proportion is a rational

multiple of the Artin’s constant A = Hp (1 — p(Tl—l))' Assuming the Generalized Riemann Hypothesis
(GRH), Hooley [Ho| proved that [,(p) = p — 1 for positive proportion of primes p < z. It is expected that
lo(p) is large for majority of primes p < x. In [EM], Erdos and Murty showed that l,(p) > p'/2t<®) for
all but o(m(x)) primes p < x where €(p) — 0. With much simpler method, they showed a weaker result
la(p) > 13[ for all but O(z/log® x) primes p < z. Pappalardi [P] showed that there exist o, § > 0 such that

la(p) > pl/ 2 exp (log’ p) for all but O(z/log!*® z). Kurlberg and Pomerance [KP2] applied Fouvry [Fo] to
show that there is v > 0 such that I,(p) > p'/>*7 for positive proportion of primes p < z.

Therefore, it is natural to expect that the average reciprocal of l,(p) is quite small. Murty and Srini-
vasan [MS] showed that Zp<:t o = O(y/x) and that ZIKM o = = O(«'/*) implies AC for a. Pap-

palardi [P] proved that for some positive constant -,
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l log1Jr7 )

For fixed a, it seems that it is very difficult to reduce /= with current knowledge. However, we expect
that averaging over a would give some information. The following result by Felix [Fe| supports that I, (p)
is mostly large:

If o(y), then

p<zx

log:v =

fzzl log$+0(loglogx)+0<z>.

a<y p<lz

Felix remarked that the first error term O(loglogx) can be Cloglogax + O(1) by applying Fiorilli’s
method [Fi], but did not explicitly find C. We find the C' in Theorem 1.1. This detailed estimate takes
effect when m = o(y). We apply a deep result on exponential sums by Bourgain [B] to obtain
Corollary 2.2 which will be the key for all average results in this paper.



Theorem 1.1. Ifm = o(y), then
ZZ =logxz + Cloglogz + O(1) + O L ,
la( yloglog
a<yp<:13

where

logp
C=2y—2
1R T

((2)¢(3) = n(k) —1p10gp p—1
¢(6) = k* Z —pr1 o8k g(ler?—erl)'

Assuming GRH for Kummer extensions Q(Cg, a'/ d) Pappalardi [P, Theorem 4.1] proved that for in-
creasing function ¢ (x) tending to infinity, {,(p) > ( ) for all but O <%> primes p < z. We prove
an unconditional average version of Pappalardi’s result proven within log? z = o((x)).

Theorem 1.2. Let ¢(z) be an increasing function such thatlog® x = o(1p(x)). Let § be the positive constant
in Corollary 2.8. If z'~%1log® x = o(y), then

1 2751 2
72 3 1:7r(x)+0<‘” ng> +o<”“°0g“">.
a<y p<a: ’lb(.%’) Yy
la(p)> ,l,(y)

Assuming the GRH for Kummer extensions Q(¢y, a'/¢), Kurlberg and Pomerance [KP] showed that

1 x
—_ E lo(p) = cqz + O
x) o ( ) ((log $)1—4/ log loglogm)

where ¢, is a rational multiple of ¢ = [] <1 —

P
(c,d) =1, |¢| <z, and |d| < z. For integral a, Stephens [S, Theorem 1] proved assuming the GRH that

1 lo(p) x xloglog
=cq O(———).
W(x)zp—l : loga?+ ( 2

e log” x

3’:1). In fact, they proved this for rational a = ¢/d with

An average result over all possible nonzero residue classes is obtained by Luca [L]: For any constant A > 0,

1 1 A 1
w(a:);(p—wzf“(p):”o( A )

log™ x

By partial summation, this gives the following statistics on average order:

=y-L Z cﬁo(b{;w).

p<z

We prove that unconditionally on average, a similar result holds with average order cp.

Theorem 1.3. Let A > 0 be any constant, and § > 0 be the constant in Corollary 2.8. If x'~%log® x = o(y),

then 2 3—87..2
—o]
LYl = etita?) + 0 (5 ) + 0 (T
a<yp<x IOg €T Y
pla
where
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An immediate corollary of Theorem 1.3 is the following average version of Kurlberg and Pomerance:



Corollary 1.4. Let § > 0 be the constant in Corollary 2.4. If z'=%log® z = o(y), then

72 Z p) = ;cm+o<og$>+o<x“;g%>.

a<y p<a:

pta

Theorem 1.3 and Corollary 1.4 are indeed weaker than what we can achieve from [S, Theorem 1]. We
state and prove these to exhibit the use of Erd6s-Turan inequality and Bourgain’s exponential sum result.

2. BACKGROUND

2.1. Equidistribution. A sequence {a,} of real numbers with a, € [0, 1] are said to be equidistributed
modulo 1 if the following is satisfied:

Definition 2.1. Let 0 < a < b < 1. Suppose that
1
im — < : =b—a.
A}gnoo N#{n <N :ap€(a,b)}=b—a
Then we say that {ay} is equidistributed modulo 1.
We have the following well-known criterion by Weyl [W]:
Theorem 2.2. For any integer k # 0, suppose that

1 .
lim — g e2mikan — ().
N—ooo N
n<N

Then the sequence {a,} is equidistributed modulo 1.

There was an effort to obtain a quantitative form of the equidistribution theorem. Erdés and Turdn [ET]
succeed in obtaining such form:

Theorem 2.3 (Erdés-Turan Inequality). Let {an} be a sequence of real numbers in [0,1]. Then

N
su n<N:a, € (a,b)}—(b—a)N|<c + g2miman |
osa<lz§1 # (@,8)) = ( ) M1 QZ 7;\,

Montgomery [M] obtained ¢; = 1, ¢a = 3. Mauduit, Rivat, Sarkézy [MRS] obtained ¢; = ¢o = 1. Thus,
we have a quantitative upper bound of discrepancy when we have good upper bounds for exponential sums.
2.2. Exponential Sums in Prime Fields. Bourgain [B] obtained the following equidistribution result

C
for the subgroup H < [, when [H| > pleloer for some absolute constant C' > 1 by sum-product method.
See also [BG].
Theorem 2.4. Let p be a prime. There exist absolute constants C' > 1 and C7 > 0 such that for any
C
subgroup H of Ty with |H| > plslsr,

< e losr ).
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Since any subgroup H of I} is cyclic, we consider |H| = d|p — 1. Then H consists of all d-th roots of
unity in [F,,. This yields

max
(k,p)=1

C
Corollary 2.5. Let 1 < d|p — 1. Suppose that d > ploeleer. Then we have

2mime _log€1
max E MM | < de o8P,
m,p)=1
(m.p) a€l,, al=1

Combining this with Erdos-Turan inequality, we obtain the following



C
Corollary 2.6. Let y > 1. Assume that d|p — 1 and d > plsiosr. Then for any constant Cy € (0,C1),
where Cy is given in Corollary 2.5, we have

Y 1=Ydt 0@ 7).

a<y, at=1(p) ¥

Proof. Since d|p — 1, the congruence a? = 1 yields d roots in F,. Thus, we need to count a < y satisfying
those d congruences modulo p. Considering % = L%J + % — L%J, it is enough to prove the result for y < p.
We apply Erdés-Turdn inequality to the set {% 0<a<p—1,a*=1(p)} = {a1, - ,aq}. Then

S

m
m=1 a<p—1, ad=1(p)

p—1
. ) ) 1 2mime
#{1 <1 <d:a;€(0,= modl—d’<+ — e P
{ ( p) } ) > >

Qs

< -+ (210gp)de_l°gclp

3

<de” log“2p,
This completes the proof. O
For the Theorem 1.2 and 1.3, we use a weaker form of Theorem 2.4.
Theorem 2.7. For any fized € > 0, There exist a constant 6 = 0(€) > 0 such that for any subgroup H of
Fy, with [H| > p,

o B
max Ze%mz’ < p~°|H]|.
(kp)=1| =f

Similarly, we have the following corollary:

Corollary 2.8. Let 1 < d|p — 1. Let € > 0 be fized. Suppose that d > p°. Then there exists a constant
d =d(e) > 0 such that

max Z MMy | < dp~0.
(m,p)=1 4
a€lFp, a%=1
We omit the proof of the following corollary because it is similar to that of Corollary 2.6.

Corollary 2.9. Let y > 1. Let € > 0 be fized. Assume that dlp — 1 and d > p°. Then there exists
d =0(e) > 0 such that

Y= %d+ O(dp™).

a<y, adEl(p)

Corollary 2.6 and 2.8 play key roles in proving Theorem 1.1, 1.2, and 1.3. Note that this is significantly
better than the trivial bound when p is large:

Y 1=Ya+ o).

a<y, a?=1(p) p

3. PROOF OF THEOREMS

3.1. Proof of Theorem 1.1. Let ¢ = log‘fgm and consider the summation change:
1 1
PR — _ 1
D T d = X
a<y p<z d<z p<z a<y

p=1(d) la(p)=d

Yy
d<z¢ z¢<d<z
=21+ 2.



First, we treat ¥; by trivial bound and Brun-Titchmarsh inequality:

Z 1 Z Z
d<z¢ p<zx a<ly
p=1(d) L (p)=d

_y ! y
=Y 1 3 (s +owa)

d<z¢ p<zx
p—l(d)

—Z > ¢(d) +OE1)

d<ac6 p<z

p=1(d)
where
1 o(d
CEDS DIRIUEDIE LD IR
d<xe p<z d<ze p<z
p=1(d) p=1(d)
=y @w(x,d, 1)
d
d<z€
od) =z
< Z d <Z5( )log:c <L €x.
d<x€
Thus,

Z > ¢ —i—Oe:U)

d<9c6 p<lzx
p=1(d)

Now, we treat o by Mobius inversion and Corollary 2.6:

m= Y Y Y

re<ld<z p<lzx a<y
p=1(d) la(p)=d

=Y Y (i) X

re<d<z p<z d'|d a<y

p=1(d) a? =1(p)
d 1
SDIED D YNICED SIEEED DI SIS D ¢ ID i
z€<d<z p<z d'|d a=y z¢<d<z  p<w d'|d asy
p=1(d )d’<pw a? =1(p) p=1(d) d/zpm a? =1(p)
d
= Z Z Z M(d’)( d/—i-O(d/))
x6<d<x g<ac d'|d
p=1(d) o <poESeET
1 d
+ Z g Z Z <d,> < d,+0(d/ —log p))
z¢<d<z p<z d'|d
p=1(d)



Then we have

Y1+ 2o
1 Y 1 d\vy , 1 d\y ,
= g @i+ > 5> > owmlg)dr X g X owlg),d
d<xz€ gﬁx ze<d<z gﬁaz d'|d ze<ld<z ggx d'|d
P=1d) P=1d) d'<p log%gp p=1(d) d'>p log%gp

+ O(E1) + O(EQ) + O(Eg)

=>. S % + O(E1) + O(Es) + O(E3),

d<zx p<x

p=1(d)
where
d
-y X (i)
6<d<ac p<x
p=1(d )d’<p@
and
=D Z Z 'u(j,) d'e 18

x€<d<x p<zx

1(d c
p= ( )d/zploglogp

Here, the term
¢(d) y
POl D
d<z p<lzx
p= 1(d)

is the main term in [Fe, Theorem 1.4]. It is proven to be ylogz 4+ O(yloglog x) in [Fe, Theorem 1.4] which
will be shown to be ylogz + Cyloglogx + O(1) later.
We treat Eo. Since m(x;d, 1) < %, we have:

xix T ()

ze<d<z p<x d'|d
pzl(d)d,<p%

<Y Y % ow

xf<d<x
p= 1(d) d/<ploglogp

1 2C

€ ¥ 53 o
re<d<x p<x
p=1(d)

2c 1
& plogloge Z gw(x;d,l)

ze<d<z

2C x
log log « R
<Lz E 2
re<ld<z

Since Y s, 2 < 1, we have

2C e
E2 << J;1+loglogx_€ << xl_ﬁ‘



We are left with Fs. First, we have the following:

d
> el
d'|d

(@]
d/Zplog log p

|
1+2
1=
pld p 1_5
< ¢(d)3“,

where w(d) is the number of distinct prime factors of d.
Again by m(z;d,1) < 7, we have

1
By < § : E § : qb(d)?)w(d)e—logC‘Sat
ze<d<z p<z

p=1(d)
1 (DT 1063 2
< > S0(d)3 (d)ae log™s x

re<ld<z
By partial summation with ), 3@(@) « tlog?t,
3w(d)

_ C3 _ C3 _ Cy
ze 0877 « p(logdr)e 18 T « gemloB T,

Combining these estimates, we have

P(d Yy € — log€
Y = XA S L o) + 0 ) + Ofwe ),
a<y p<z d<wz p<$
=1(d)
with the first error term dominating the other two. Hence,

Y =Yy Vo).

a<y p<z a d<x p<w
p=1(d)

Following the proof of [Fe, Theorem 1.4], we have

d k -1
> e = Y - ()

d<z k<z p<lzx

p=1(k)

- > v ¥

k<log?t2z logAt2?z<k<w

- ¥ +o<f‘A>.

log™ x
kglogA+2 T &

As Fiorilli and Felix pointed out, we apply

p<x
p=1(k)

X

5 (52 - 2o e (42) o 2

)



where

~C(2)¢(3) p—1
Al =76 g (HpQ p+1> ’

log p p—1)plogp
Calk) = a(h) (= Y Bl Y o bEr )
PP p*—p

plk

and k" =[], p.
As in [Fe, Theorem 1.4], all the sums over k are absolutely convergent and ”701()

3 Mg{’f) > (p;l) . "é’;) <x01(k)+ (202(k)+01(k) log ((’“];)2» n@))

k<log®t?z p<x k<log®t?z

p=1(k)
+0 <loggf4x)
<m-zzp I_ij’ﬂ) i)
(ZM \Ci (k ( 2%: —1 plogp+log<(kl;)2))) li(z)
+0 <loggi‘:c> .

+0 (bg%)’ we finally obtain

Z¢ Z /u22¢ m(x; k, 1) du + O(1)

d<zx p<zx
—/w1 ut O 10— ) ) du+o0(1)
)y u? logu log? u

p= 1(d)
=logz + Cloglogx + O(1),

=1, so we have

Since li(u) =

u
~ logu

where

logp
_27722 —p+1

p(k 01 plogp (k')
-2 1 .
PE GO (Lo ey (1
plk
Since the terms in the second sum over k only appears when k is square free, we have k' = k. Thus,

log p
C=2y— 22 |

*ZH 01 (22 1pogp+1ogk,)_
|k

This completes the proof of Theorem 1.1.




3.2. Proof of Theorem 1.2. Throughout this and the next sections, ¢ > 0 is a fixed constant. Let
¥ (x) be an increasing function which tends to infinity as z — oco. The rate of increase of ¥ (z) is to be

determined. We start with the change of order in summation. By Corollary 2.8,

>y -

a<y p<zx

PP SED I

W <d<z p<z a<y
p=1(d) la(p)=d

-2 2 2

1/)( j <d<z P<T {|
P= 1M)w<p =1(p)

55 2 @) iron)

Ty <d<e p<z  d/|
d
(&) (5 o)

(%;u}:zz

e ><cl<a: p<z /
p=1(d) d’>p

p=1(d) d’<p

2 dm

<d<z p<z d'|d

v p=1(d) d/>p
-y Y ! ,0(d) +O(E) + O(Ey),
ﬁ<d<$ p<$
p= 1(d)

where

=2 >

d<z p<z d'|d
p=1(d) ¢’ <pe

<Y Y Y

d<z p<z d'<p¢
p=1(d)

< % Z m(xz;d, 1)
d<x
< 2% log

(2)

and

(2
d<z p<z d/|
p= l(d)d/>p
<<Z Z ¢ 3w(d)p—6
d<z p<zx
p=1(d)
(d)x176
d)3“\Y ——
<<dZ<;<z>( ) y

< z27° log? .

() %

a'=1(p)



Now we treat the main term. Since we have Y p<z % = W by [EP, Lemma 2.5],
p=1(d)
1
>, ol Z =D 0 >, o= 9 Z >
<d<wz p<z d<z d< p<z
e = 1(d> 1@ w R 1(d)
1
= Z Z od) = > o) >, o
p<z P gp1 d< s 5

loglog x + logd
_Z—+O > (d) 5@
p<z e

= m(x) + O(loglog x) + O (”i;(()i)x) .

Combining all the estimates, we have

1
Z Z 1 =ym(x) 4+ O(yloglogz) + O (acy ng) + 02 log? z).

a<y p<x w(ﬂﬁ)
la(p)> s

Since we have y < z, the error term O(yloglogz) is dominated by O(z% %log?z). This completes the
proof of Theorem 1.2.

3.3. Proof of Theorem 1.3. We begin with an application of Mobius inversion and Corollary 2.8:

2.2 2 d=>dy, ) 1

a<yd<z p<zx d<zx p<z a<ly
la(p)=d p=1(d) la(p)=d
d
“Sa Y Ya(h) T Xe X Su(y) T
d<z  p<z d'|d a<y d<z  p<z _d|d a<y
Pp=1(d) ¢ <pe a? =1(p) p=1(d) ¢’ >pe a?' =1(p)
=0 % S u(g) (e row)
d<zx p<z {| p
p= 1(d)d’<p

+Yd Y Y (;) (id’—i—O(d’p‘s))

d<z p<z d'|d

p=1(d) @' >pe
=Y dg(d) Y L+ 0(E) +O(E),
d<z p<z p
p=1(d)

where

BeYdY Y

d
()]
d<z  p<z_ d'|d
p=1(d) @’ <pe

<> d > Y d

d<z  p<z_d'<p
p=1(d)

< z% Z dm(z;d, 1)

d<z

< $2+267



and

By Y

d B
()| o
d<z p<z d'|d
P=1(d) grome

<Y d Y p(d)3eDp?

d<z p<z
p=1(d)

p1-0
<> dqu(d)Bw(d)T
d<z
< 370 log? .

Now we treat the main term:

Saod) Yo L=y 32 3 dotd)

d<z p<z p p<z " dlp—1
p=1(d)

—Dap—-1
Z(p Jo(p — 1)

p<x p
=y<za(p—1)—za(pp_l)>-

Here, a(n) = 1 do(d) is the average order of Z/nZ. We use the following theorem by Luca [L,
n Ldln
Theorem 1]:

Theorem 3.1. For any constant A > 0,

X o (i)

log? z

where

Applying this theorem with partial summation, we obtain

Za(p—l)—zoﬂ_l):cLi(xQ)—i—O(la;).

p<x p<x og T

ZZd Z 1=cyLi(z®) + 0O ( y’ > + 023 log? z).

A
a<yd<z p<w log™ @
la(p):d

This completes the proof of Theorem 1.3.
For the proof of Corollary 1.1, we use Li(z?) = Jar(z) + O ( z )

log? =

Therefore,

4. REMARKS

The theorems in this paper have resemblance. If we change order of summation to put ) first, Theorem
1.1 is essentially >, d =1 > p2q Theorem 1.21is 3, d° > p 2 _q» and Theorem 1.3 is 3, d* >p2_q- There
is a difference in the method of Theorem 1.1, and the other two. In Theorem 1.1, we split the sum into
four parts, while we split into three parts in Theorem 1.2 and Theorem 1.3. This is because d~! is large
for small d’s. We do not have a better information than O(ex) for the error term O(E}) in Theorem 1.1,
unless we have better exponential sum results. However, the method presented in this paper has wide
variety of applications. For various conditional results, we could obtain the corresponding unconditional



average results, and this method of exponential sums is powerful in shortening the range of averaging. In
the upcoming paper, we will consider problems on the order of a modulo n, for general modulus n.
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