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ABSTRACT. Let a > 1 be an integer. Denote by l,(n) the multiplicative order of @ modulo integer n > 1.
We prove that there is a positive constant § such that if 21 7% = o(y), then

1 1 log 1

TSN L) = T exp (B—28T (14 4(1))

y x log x logloglog x
AT

B”‘”E[(l‘@—wlwm)'

It was known for y = z in [KP, Page 3] in which they refer to [LS].
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1. INTRODUCTION

Let a > 1 be an integer. If n be coprime to a, we write d = l,(n) if d is the multiplicative order of a
modulo n. Then d is the smallest positive integer in the congruence a? = 1 (mod n).

The Carmichael’s lambda function A(n) is defined by the exponent of the group (Z/nZ)*. It was known
in [EPS] that
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Assuming GRH for Kummer extensions Q((y, a'/?), P. Kurlberg and C. Pomerance [KP] showed that
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with B = ¢ 7]], (1 = m) The upper bound implicit is unconditional because l,(n) < A(n).
An unconditional average result over all possible nonzero residue classes is obtained by F. Luca and I.

Shparlinski [LS]:
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As pointed out in [KP], by partial summation, we have the following statistics on average order:
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For fixed a, it seems that it is very difficult to remove GRH in P. Kurlberg and C. Pomerance’s result with
current knowledge. However, we expect that averaging over a would give some information. So, we take
average over a < y, but we do not want to have too large y such as y > x. For all the average results in
this paper, we assume that y < x, and try to obtain y as small as possible. By applying a deep result on
exponential sums by Bourgain [B], we prove the unconditional average result on a shorter interval.



Theorem 1.1. There is a positive constant § such that, if z'=0 = o(y), then
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2. BACKGROUNDS

where

2.1. Equidistribution. A sequence {a,} of real numbers are said to be equidistributed modulo 1 if the
following is satisfied:

Definition 2.1. Let 0 < a < b < 1. Suppose that

1
lim N|{n§N : ap € (a,b) mod 1} = b — a.
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Then we say that {ay} is equidistributed modulo 1.
A well-known criterion by Weyl [W] is

Theorem 2.1. For any integer k # 0, suppose that
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Then the sequence {a,} is equidistributed modulo 1.

There was a series of efforts to obtain a quantitative form of the equidistribution theorem. Erdés and
Turdn [ET] succeeded in obtaining the following result:

Theorem 2.2. Let {a,} be a sequence of real numbers. Then for some positive constants ¢; and ca,
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H. Montgomery [M] obtained ¢; = 1, co = 3. C. Mauduit, J. Rivat, A. Sarkézy [MRS] obtained
c1 = co = 1. Thus, we have a quantitative upper bound of discrepancy when we have good upper bounds
for exponential sums.

2.2. Exponential Sums in Z!. We define arithmetic functions a,(d) and b, (d) for 1 < d|A(n) as follows:
an(d) ={0<a<n: lg(n) =d},

bo(d) = {0 <a<n: a?=1 (mod n)}|.
Then

We give some algebraic remarks about the function b, (d). First, we see that
H,g:={0<a<n: a’=1 (modn)}

forms a subgroup of Z} of order b,(d). The following proposition is from elementary group theory:



Proposition 2.1. Let H,, 4 and b,(d) be defined as above. For any k|n, denote by 7y, the reduction modulo
n/k. Then we have
Tk - Hn,d — Hn/k,d
where w is a group homomorphism with kernel
K={0<a<n: a®=1(n), a=1(n/k)}.
By the First Isomorphism Theorem, we have
by (d
]K| — L < k.
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Note that the map 7, restricted to H, 4 is not always surjective. To see this, let p > 2 prime number,
and a=p+1,d=p, n/k=p* n=p> Then
a? = p? +1 (mod p?).
Thus,
a? =1 (mod p?).
But for any o’ = a (mod p?), so that a’ = p?j + p + 1 for some integer j, we have
(@')? = (p+ 1)? (mod p*) = p® + 1 (mod p°).
From this, we see that the element a = p+1 € H,,j;, is not a preimage of 7. The proof of |[K| < k is clear
by a = 1(n/k).
J. Bourgain [B] proved a nontrivial exponential sum result when a subgroup H of Z; has order greater
than n€ for € > 0.
Theorem 2.3. Let n > 1. For any € > 0, there exist a constant § = §(€) > 0 such that for any subgroup
H of Z} with |H| > n°,
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Corollary 2.1. Let € > 0 be arbitrary, and let y > 1. Assume that d|A\(n) and by(d) > n°. Then there
exists § = 0(€) > 0 such that

Y= %bn(d) + O by (d)n™0).
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If d|\(n), the congruence a® = 1 yields b, (d) roots in Z,. Thus, we need to count a < y satisfying those

bn(d) congruences modulo n. Considering ¥ = [£] + ¥ — | ¥] it is enough to prove the result for y < n.

We apply the Erdés-Turén inequality to the set {2 :0 < a < n, a? =1(n)}. Then
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Unlike the prime modulus case, we immediately encounter a problem. The exponential sum result (Theorem
2.3) is only for (m,n) = 1, but the sum takes all 1 < m < n. Then we have too many terms with (m,n) # 1.
Therefore, we need some modification in applying the Erdds-Turéan inequality. A starting point is to observe
that we can take M arbitrary in the Erdés-Turan inequality.

Proof of Corollary 2.1)

Assuming that k|n and b,(d) > n¢, we have

n€ < bo(d) < Kl (Hn.g)|-

Then
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If we can assume that
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for some positive €’ < €, then we can use Theorem 2.3 with € and §” = §(¢”). This is achieved by

k:<n1 6”.

Let € = i:g,l, and we take M +1 = LnEIJ in the Erd6s-Turan inequality. Then we have reduced the number
of terms appearing in the sum on the right side. We rewrite the sum by substituting (m,n) =k, T = j
and apply Theorem 2.3 to the exponential sums inside. This is possible due to
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and 7 (Hp,q) being a subgroup of Z7* Ik The sum on the right becomes
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Thus, the Erdés-Turdn inequality gives
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Therefore we can take 0 < 6 < min(¢’,§”(1 — €)). This completes the proof of Corollary 2.1.
Corollary 2.1 plays a key role in proving Theorem 1.1. Note that the upper bound provided in Corollary
2.1 is significantly better than the trivial bound which is:

o= %bn(d) + O(by(d)).

a<y, a?=1(n)
3. PROOF OF THEOREMS

3.1. Proof of Theorem 1.1. We start with the change of order in summation:
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Now we treat the main term:
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Taking 6 to satisfy 2 + ¢ < 3 — §, we have
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a<yn<w n<z  d|\(n)
Let u(n) = Zd| A(n) dan(d) be the average multiplicative order of the elements of (Z/nZ)*. The
following is proven in [LS Theorem 6]:
Theorem 3.1.
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What we have for the main term is the middle term in the following inequalities:

loglloga: Zu(n) < Z (égln)u(n) < Zu(n)
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Since logloglogx = o (&%), it follows that
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Hence, we have

ZZla(n) ya? exp (Bloglogx(l +o(1))> 4 O(a3 o)y,
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Moreover, if for some 0 < §' < §, and 2179 = o(y), then the error term can be included in the term with
o(1). The terms that appear when n < a, are also included in the term with o(1). This completes the
proof of Theorem 1.1.
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