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Abstract. Let a > 1 be an integer. Denote by la(n) the multiplicative order of a modulo integer n ≥ 1.
We prove that there is a positive constant δ such that if x1−δ = o(y), then
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It was known for y = x in [KP, Page 3] in which they refer to [LS].

1. Introduction

Let a > 1 be an integer. If n be coprime to a, we write d = la(n) if d is the multiplicative order of a
modulo n. Then d is the smallest positive integer in the congruence ad ≡ 1 (mod n).

The Carmichael’s lambda function λ(n) is defined by the exponent of the group (Z/nZ)∗. It was known
in [EPS] that
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Assuming GRH for Kummer extensions Q(ζd, a
1/d), P. Kurlberg and C. Pomerance [KP] showed that
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. The upper bound implicit is unconditional because la(n) ≤ λ(n).

An unconditional average result over all possible nonzero residue classes is obtained by F. Luca and I.
Shparlinski [LS]:
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As pointed out in [KP], by partial summation, we have the following statistics on average order:
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.

For fixed a, it seems that it is very difficult to remove GRH in P. Kurlberg and C. Pomerance’s result with
current knowledge. However, we expect that averaging over a would give some information. So, we take
average over a < y, but we do not want to have too large y such as y > x. For all the average results in
this paper, we assume that y < x, and try to obtain y as small as possible. By applying a deep result on
exponential sums by Bourgain [B], we prove the unconditional average result on a shorter interval.



Theorem 1.1. There is a positive constant δ such that, if x1−δ = o(y), then
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2. Backgrounds

2.1. Equidistribution. A sequence {an} of real numbers are said to be equidistributed modulo 1 if the
following is satisfied:

Definition 2.1. Let 0 ≤ a < b ≤ 1. Suppose that

lim
N→∞

1

N
|{n ≤ N : an ∈ (a, b) mod 1}| = b− a.

Then we say that {an} is equidistributed modulo 1.

A well-known criterion by Weyl [W] is

Theorem 2.1. For any integer k 6= 0, suppose that

lim
N→∞

1

N

∑
n≤N

e2πikan = 0.

Then the sequence {an} is equidistributed modulo 1.

There was a series of efforts to obtain a quantitative form of the equidistribution theorem. Erdős and
Turán [ET] succeeded in obtaining the following result:

Theorem 2.2. Let {an} be a sequence of real numbers. Then for some positive constants c1 and c2,

sup
0≤a<b≤1

||{n ≤ N : an ∈ (a, b) mod 1}| − (b− a)N | ≤ c1
N

M + 1
+ c2

M∑
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H. Montgomery [M] obtained c1 = 1, c2 = 3. C. Mauduit, J. Rivat, A. Sárkőzy [MRS] obtained

c1 = c2 = 1. Thus, we have a quantitative upper bound of discrepancy when we have good upper bounds
for exponential sums.

2.2. Exponential Sums in Z∗n. We define arithmetic functions an(d) and bn(d) for 1 ≤ d|λ(n) as follows:

an(d) = |{0 < a < n : la(n) = d}|,

bn(d) = |{0 < a < n : ad ≡ 1 (mod n)}|.

Then

an(d) =
∑
d′|d

µ

(
d

d′

)
bn(d′).

We give some algebraic remarks about the function bn(d). First, we see that

Hn,d := {0 < a < n : ad ≡ 1 (mod n)}

forms a subgroup of Z∗n of order bn(d). The following proposition is from elementary group theory:



Proposition 2.1. Let Hn,d and bn(d) be defined as above. For any k|n, denote by πk the reduction modulo
n/k. Then we have

πk : Hn,d −→ Hn/k,d

where πk is a group homomorphism with kernel

K = {0 < a < n : ad ≡ 1(n), a ≡ 1(n/k)}.
By the First Isomorphism Theorem, we have

|K| = bn(d)

|πk(Hn,d)|
≤ k.

Note that the map πk restricted to Hn,d is not always surjective. To see this, let p > 2 prime number,
and a = p+ 1, d = p, n/k = p2, n = p3. Then

ap ≡ p2 + 1 (mod p3).

Thus,
ap ≡ 1 (mod p2).

But for any a′ ≡ a (mod p2), so that a′ = p2j + p+ 1 for some integer j, we have

(a′)p ≡ (p+ 1)p (mod p3) ≡ p2 + 1 (mod p3).

From this, we see that the element a = p+ 1 ∈ Hn/k is not a preimage of πk. The proof of |K| ≤ k is clear
by a ≡ 1(n/k).

J. Bourgain [B] proved a nontrivial exponential sum result when a subgroup H of Z∗n has order greater
than nε for ε > 0.

Theorem 2.3. Let n ≥ 1. For any ε > 0, there exist a constant δ = δ(ε) > 0 such that for any subgroup
H of Z∗n with |H| > nε,

max
(m,n)=1

∣∣∣∣∣∑
a∈H

e2πim
a
n

∣∣∣∣∣ < n−δ|H|.

Corollary 2.1. Let ε > 0 be arbitrary, and let y ≥ 1. Assume that d|λ(n) and bn(d) > nε. Then there
exists δ = δ(ε) > 0 such that ∑

a<y, ad≡1(n)

1 =
y

n
bn(d) +O(bn(d)n−δ).

If d|λ(n), the congruence ad ≡ 1 yields bn(d) roots in Zn. Thus, we need to count a < y satisfying those
bn(d) congruences modulo n. Considering y

n = b ync + y
n − b

y
nc, it is enough to prove the result for y < n.

We apply the Erdős-Turán inequality to the set { an : 0 < a < n, ad ≡ 1(n)}. Then∣∣∣|{0 < a < n : ad ≡ 1(n),
a
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n
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a
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∣∣∣∣∣∣ .
Unlike the prime modulus case, we immediately encounter a problem. The exponential sum result (Theorem
2.3) is only for (m,n) = 1, but the sum takes all 1 ≤ m < n. Then we have too many terms with (m,n) 6= 1.
Therefore, we need some modification in applying the Erdős-Turán inequality. A starting point is to observe
that we can take M arbitrary in the Erdős-Turán inequality.

Proof of Corollary 2.1)
Assuming that k|n and bn(d) > nε, we have

nε < bn(d) ≤ k|πk(Hn,d)|.
Then

nε

k
< |πk(Hn,d)|.

If we can assume that (n
k

)ε′′
<
nε

k



for some positive ε′′ < ε, then we can use Theorem 2.3 with ε′′ and δ′′ = δ(ε′′). This is achieved by

k < n
ε−ε′′
1−ε′′ .

Let ε′ = ε−ε′′
1−ε′′ and we take M +1 = bnε′c in the Erdős-Turán inequality. Then we have reduced the number

of terms appearing in the sum on the right side. We rewrite the sum by substituting (m,n) = k, m
k = j

and apply Theorem 2.3 to the exponential sums inside. This is possible due to(n
k

)ε′′
< |πk(Hn,d)|

and πk(Hn,d) being a subgroup of Z∗n/k. The sum on the right becomes
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k

)−δ′′

≤ n−δ′′(1−ε′)bn(d)(1 + log n)2.

Thus, the Erdős-Turán inequality gives∣∣∣|{0 < a < n : ad ≡ 1(n),
a

n
∈ (0,

y

n
) mod 1}| − y

n
bn(d)

∣∣∣ ≤ bn(d)

nε′
+ bn(d)n−δ

′′(1−ε′)(1 + log n)2.

Therefore we can take 0 < δ < min(ε′, δ′′(1− ε′)). This completes the proof of Corollary 2.1.
Corollary 2.1 plays a key role in proving Theorem 1.1. Note that the upper bound provided in Corollary

2.1 is significantly better than the trivial bound which is:∑
a<y, ad≡1(n)

1 =
y

n
bn(d) +O(bn(d)).

3. Proof of Theorems

3.1. Proof of Theorem 1.1. We start with the change of order in summation:∑
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where
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∑
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∑
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Now we treat the main term: ∑
d<x

d
∑
n<x
d|λ(n)

1

n
an(d) =

∑
n<x

1

n

∑
d|λ(n)

dan(d).

Taking δ to satisfy 2 + ε ≤ 3− δ, we have∑
a<y

∑
n<x

la(n) = y
∑
n<x

1

n

∑
d|λ(n)

dan(d) +O(x3−δ+o(1)).

Let u(n) = 1
φ(n)

∑
d|λ(n) dan(d) be the average multiplicative order of the elements of (Z/nZ)∗. The

following is proven in [LS, Theorem 6]:

Theorem 3.1.
1

x

∑
n<x

u(n) =
x

log x
exp

(
B

log log x

log log log x
(1 + o(1))

)
.

What we have for the main term is the middle term in the following inequalities:

1

log log x

∑
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u(n)�
∑
n<x

φ(n)

n
u(n) ≤

∑
n<x

u(n).

Since log log log x = o
(

log log x
log log log x

)
, it follows that∑

n<x

φ(n)

n
u(n) =

x2

log x
exp

(
B

log log x

log log log x
(1 + o(1))
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.



Hence, we have ∑
a<y

∑
n<x

la(n) =
yx2

log x
exp

(
B

log log x

log log log x
(1 + o(1))

)
+O(x3−δ+o(1)).

Moreover, if for some 0 < δ′ < δ, and x1−δ
′

= o(y), then the error term can be included in the term with
o(1). The terms that appear when n ≤ a, are also included in the term with o(1). This completes the
proof of Theorem 1.1.
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