ON THE ORDER OF a MODULO n, ON AVERAGE

KIM, SUNGJIN
DEPARTMENT OF MATHEMATICS
UNIVERSITY OF CALIFORNIA, LOS ANGELES
MATH SCIENCE BUILDING 6617A
E-MAIL: 707107@GMAIL.COM

AbStract. Let $a>1$ be an integer. Denote by $l_{a}(n)$ the multiplicative order of a modulo integer $n \geq 1$. We prove that there is a positive constant δ such that if $x^{1-\delta}=o(y)$, then

$$
\frac{1}{y} \sum_{a<y} \frac{1}{x} \sum_{\substack{a<n<x \\(a, n)=1}} l_{a}(n)=\frac{x}{\log x} \exp \left(B \frac{\log \log x}{\log \log \log x}(1+o(1))\right)
$$

where

$$
B=e^{-\gamma} \prod_{p}\left(1-\frac{1}{(p-1)^{2}(p+1)}\right)
$$

It was known for $y=x$ in [KP, Page 3] in which they refer to [LS].

1. Introduction

Let $a>1$ be an integer. If n be coprime to a, we write $d=l_{a}(n)$ if d is the multiplicative order of a modulo n. Then d is the smallest positive integer in the congruence $a^{d} \equiv 1(\bmod n)$.

The Carmichael's lambda function $\lambda(n)$ is defined by the exponent of the group $(\mathbb{Z} / n \mathbb{Z})^{*}$. It was known in [EPS] that

$$
\frac{1}{x} \sum_{n<x} \lambda(n)=\frac{x}{\log x} \exp \left(B \frac{\log \log x}{\log \log \log x}(1+o(1))\right) .
$$

Assuming GRH for Kummer extensions $\mathbb{Q}\left(\zeta_{d}, a^{1 / d}\right)$, P. Kurlberg and C. Pomerance $[\mathrm{KP}]$ showed that

$$
\frac{1}{x} \sum_{n<x} l_{a}(n)=\frac{x}{\log x} \exp \left(B \frac{\log \log x}{\log \log \log x}(1+o(1))\right)
$$

with $B=e^{-\gamma} \prod_{p}\left(1-\frac{1}{(p-1)^{2}(p+1)}\right)$. The upper bound implicit is unconditional because $l_{a}(n) \leq \lambda(n)$. An unconditional average result over all possible nonzero residue classes is obtained by F. Luca and I. Shparlinski [LS]:

$$
\frac{1}{x} \sum_{n<x} \frac{1}{\phi(n)} \sum_{a<n} l_{a}(n)=\frac{x}{\log x} \exp \left(B \frac{\log \log x}{\log \log \log x}(1+o(1))\right) .
$$

As pointed out in $[\mathrm{KP}]$, by partial summation, we have the following statistics on average order:

$$
\frac{1}{x^{2}} \sum_{a<x} \sum_{a<n<x} l_{a}(n)=\frac{x}{\log x} \exp \left(B \frac{\log \log x}{\log \log \log x}(1+o(1))\right) .
$$

For fixed a, it seems that it is very difficult to remove GRH in P. Kurlberg and C. Pomerance's result with current knowledge. However, we expect that averaging over a would give some information. So, we take average over $a<y$, but we do not want to have too large y such as $y>x$. For all the average results in this paper, we assume that $y<x$, and try to obtain y as small as possible. By applying a deep result on exponential sums by Bourgain [B], we prove the unconditional average result on a shorter interval.

Theorem 1.1. There is a positive constant δ such that, if $x^{1-\delta}=o(y)$, then

$$
\frac{1}{y} \sum_{a<y} \frac{1}{x} \sum_{\substack{a<n<x \\(a, n)=1}} l_{a}(n)=\frac{x}{\log x} \exp \left(B \frac{\log \log x}{\log \log \log x}(1+o(1))\right)
$$

where

$$
B=e^{-\gamma} \prod_{p}\left(1-\frac{1}{(p-1)^{2}(p+1)}\right)
$$

2. BACKGROUNDS

2.1. Equidistribution. A sequence $\left\{a_{n}\right\}$ of real numbers are said to be equidistributed modulo 1 if the following is satisfied:

Definition 2.1. Let $0 \leq a<b \leq 1$. Suppose that

$$
\lim _{N \rightarrow \infty} \frac{1}{N}\left|\left\{n \leq N: a_{n} \in(a, b) \bmod 1\right\}\right|=b-a
$$

Then we say that $\left\{a_{n}\right\}$ is equidistributed modulo 1.
A well-known criterion by Weyl [W] is
Theorem 2.1. For any integer $k \neq 0$, suppose that

$$
\lim _{N \rightarrow \infty} \frac{1}{N} \sum_{n \leq N} e^{2 \pi i k a_{n}}=0
$$

Then the sequence $\left\{a_{n}\right\}$ is equidistributed modulo 1.
There was a series of efforts to obtain a quantitative form of the equidistribution theorem. Erdős and Turán [ET] succeeded in obtaining the following result:

Theorem 2.2. Let $\left\{a_{n}\right\}$ be a sequence of real numbers. Then for some positive constants c_{1} and c_{2},

$$
\sup _{0 \leq a<b \leq 1}| |\left\{n \leq N: a_{n} \in(a, b) \bmod 1\right\}|-(b-a) N| \leq c_{1} \frac{N}{M+1}+c_{2} \sum_{m=1}^{M} \frac{1}{m}\left|\sum_{n \leq N} e^{2 \pi i m a_{n}}\right|
$$

H. Montgomery [M] obtained $c_{1}=1, c_{2}=3$. C. Mauduit, J. Rivat, A. Sárkőzy [MRS] obtained $c_{1}=c_{2}=1$. Thus, we have a quantitative upper bound of discrepancy when we have good upper bounds for exponential sums.
2.2. Exponential Sums in \mathbb{Z}_{n}^{*}. We define arithmetic functions $a_{n}(d)$ and $b_{n}(d)$ for $1 \leq d \mid \lambda(n)$ as follows:

$$
\begin{gathered}
a_{n}(d)=\left|\left\{0<a<n: l_{a}(n)=d\right\}\right|, \\
b_{n}(d)=\left|\left\{0<a<n: a^{d} \equiv 1(\bmod n)\right\}\right| .
\end{gathered}
$$

Then

$$
a_{n}(d)=\sum_{d^{\prime} \mid d} \mu\left(\frac{d}{d^{\prime}}\right) b_{n}\left(d^{\prime}\right)
$$

We give some algebraic remarks about the function $b_{n}(d)$. First, we see that

$$
H_{n, d}:=\left\{0<a<n: a^{d} \equiv 1(\bmod n)\right\}
$$

forms a subgroup of \mathbb{Z}_{n}^{*} of order $b_{n}(d)$. The following proposition is from elementary group theory:

Proposition 2.1. Let $H_{n, d}$ and $b_{n}(d)$ be defined as above. For any $k \mid n$, denote by π_{k} the reduction modulo n / k. Then we have

$$
\pi_{k}: H_{n, d} \longrightarrow H_{n / k, d}
$$

where π_{k} is a group homomorphism with kernel

$$
K=\left\{0<a<n: a^{d} \equiv 1(n), a \equiv 1(n / k)\right\}
$$

By the First Isomorphism Theorem, we have

$$
|K|=\frac{b_{n}(d)}{\left|\pi_{k}\left(H_{n, d}\right)\right|} \leq k
$$

Note that the map π_{k} restricted to $H_{n, d}$ is not always surjective. To see this, let $p>2$ prime number, and $a=p+1, d=p, n / k=p^{2}, n=p^{3}$. Then

$$
a^{p} \equiv p^{2}+1\left(\bmod p^{3}\right)
$$

Thus,

$$
a^{p} \equiv 1\left(\bmod p^{2}\right)
$$

But for any $a^{\prime} \equiv a\left(\bmod p^{2}\right)$, so that $a^{\prime}=p^{2} j+p+1$ for some integer j, we have

$$
\left(a^{\prime}\right)^{p} \equiv(p+1)^{p}\left(\bmod p^{3}\right) \equiv p^{2}+1\left(\bmod p^{3}\right)
$$

From this, we see that the element $a=p+1 \in H_{n / k}$ is not a preimage of π_{k}. The proof of $|K| \leq k$ is clear by $a \equiv 1(n / k)$.
J. Bourgain [B] proved a nontrivial exponential sum result when a subgroup H of \mathbb{Z}_{n}^{*} has order greater than n^{ϵ} for $\epsilon>0$.
Theorem 2.3. Let $n \geq 1$. For any $\epsilon>0$, there exist a constant $\delta=\delta(\epsilon)>0$ such that for any subgroup H of \mathbb{Z}_{n}^{*} with $|H|>n^{\epsilon}$,

$$
\max _{(m, n)=1}\left|\sum_{a \in H} e^{2 \pi i m \frac{a}{n}}\right|<n^{-\delta}|H|
$$

Corollary 2.1. Let $\epsilon>0$ be arbitrary, and let $y \geq 1$. Assume that $d \mid \lambda(n)$ and $b_{n}(d)>n^{\epsilon}$. Then there exists $\delta=\delta(\epsilon)>0$ such that

$$
\sum_{a<y, a^{d} \equiv 1(n)} 1=\frac{y}{n} b_{n}(d)+O\left(b_{n}(d) n^{-\delta}\right)
$$

If $d \mid \lambda(n)$, the congruence $a^{d} \equiv 1$ yields $b_{n}(d)$ roots in \mathbb{Z}_{n}. Thus, we need to count $a<y$ satisfying those $b_{n}(d)$ congruences modulo n. Considering $\frac{y}{n}=\left\lfloor\frac{y}{n}\right\rfloor+\frac{y}{n}-\left\lfloor\frac{y}{n}\right\rfloor$, it is enough to prove the result for $y<n$. We apply the Erdős-Turán inequality to the set $\left\{\frac{a}{n}: 0<a<n, a^{d} \equiv 1(n)\right\}$. Then

$$
\left|\left|\left\{0<a<n: a^{d} \equiv 1(n), \frac{a}{n} \in\left(0, \frac{y}{n}\right) \bmod 1\right\}\right|-\frac{y}{n} b_{n}(d)\right| \leq \frac{b_{n}(d)}{n}+\sum_{m=1}^{n-1} \frac{1}{m}\left|\sum_{a \in \mathbb{Z}_{n}, a^{d} \equiv 1(n)} e^{2 \pi i m \frac{a}{n}}\right|
$$

Unlike the prime modulus case, we immediately encounter a problem. The exponential sum result (Theorem $2.3)$ is only for $(m, n)=1$, but the sum takes all $1 \leq m<n$. Then we have too many terms with $(m, n) \neq 1$. Therefore, we need some modification in applying the Erdős-Turán inequality. A starting point is to observe that we can take M arbitrary in the Erdős-Turán inequality.

Proof of Corollary 2.1)
Assuming that $k \mid n$ and $b_{n}(d)>n^{\epsilon}$, we have

$$
n^{\epsilon}<b_{n}(d) \leq k\left|\pi_{k}\left(H_{n, d}\right)\right|
$$

Then

$$
\frac{n^{\epsilon}}{k}<\left|\pi_{k}\left(H_{n, d}\right)\right|
$$

If we can assume that

$$
\left(\frac{n}{k}\right)^{\epsilon^{\prime \prime}}<\frac{n^{\epsilon}}{k}
$$

for some positive $\epsilon^{\prime \prime}<\epsilon$, then we can use Theorem 2.3 with $\epsilon^{\prime \prime}$ and $\delta^{\prime \prime}=\delta\left(\epsilon^{\prime \prime}\right)$. This is achieved by

$$
k<n^{\frac{\epsilon-\epsilon^{\prime \prime}}{1-\epsilon^{\prime \prime}}} .
$$

Let $\epsilon^{\prime}=\frac{\epsilon-\epsilon^{\prime \prime}}{1-\epsilon^{\prime \prime}}$ and we take $M+1=\left\lfloor n^{\epsilon^{\prime}}\right\rfloor$ in the Erdős-Turán inequality. Then we have reduced the number of terms appearing in the sum on the right side. We rewrite the sum by substituting $(m, n)=k, \frac{m}{k}=j$ and apply Theorem 2.3 to the exponential sums inside. This is possible due to

$$
\left(\frac{n}{k}\right)^{\epsilon^{\prime \prime}}<\left|\pi_{k}\left(H_{n, d}\right)\right|
$$

and $\pi_{k}\left(H_{n, d}\right)$ being a subgroup of $\mathbb{Z}_{n / k}^{*}$. The sum on the right becomes

$$
\begin{aligned}
\sum_{m<n^{\prime}} \frac{1}{m}\left|\sum_{a \in H_{n, d}} e^{2 \pi i m \frac{a}{n}}\right| & \leq \sum_{\substack{k \mid n \\
k<n^{\epsilon^{\prime}}}} \frac{1}{k} \sum_{\left(j, \frac{n}{k}\right)=1} \frac{1}{j}\left|\sum_{a \in H_{n, d}} e^{2 \pi i j \frac{a}{n / k}}\right| \\
& =\sum_{\substack{k \mid n \\
k<n \epsilon^{\prime}}} \frac{1}{k} \sum_{\left(j, \frac{n}{k}\right)=1} \frac{1}{j} \frac{b_{n}(d)}{\left|\pi_{k}\left(H_{n, d}\right)\right|}\left|\sum_{a \in \pi_{k}\left(H_{n, d}\right)} e^{2 \pi i j \frac{a}{n / k}}\right| \\
& \leq \sum_{\substack{k \mid n \\
k<n e^{\prime}}} \frac{1}{k} \sum_{\left(j, \frac{n}{k}\right)=1} \frac{1}{j} \frac{b_{n}(d)}{\left|\pi_{k}\left(H_{n, d}\right)\right|}\left|\pi_{k}\left(H_{n, d}\right)\right|\left(\frac{n}{k}\right)^{-\delta^{\prime \prime}} \\
& \leq n^{-\delta^{\prime \prime}\left(1-\epsilon^{\prime}\right)} b_{n}(d)(1+\log n)^{2} .
\end{aligned}
$$

Thus, the Erdős-Turán inequality gives

$$
\left|\left|\left\{0<a<n: a^{d} \equiv 1(n), \frac{a}{n} \in\left(0, \frac{y}{n}\right) \bmod 1\right\}\right|-\frac{y}{n} b_{n}(d)\right| \leq \frac{b_{n}(d)}{n^{\epsilon^{\prime}}}+b_{n}(d) n^{-\delta^{\prime \prime}\left(1-\epsilon^{\prime}\right)}(1+\log n)^{2} .
$$

Therefore we can take $0<\delta<\min \left(\epsilon^{\prime}, \delta^{\prime \prime}\left(1-\epsilon^{\prime}\right)\right)$. This completes the proof of Corollary 2.1.
Corollary 2.1 plays a key role in proving Theorem 1.1. Note that the upper bound provided in Corollary 2.1 is significantly better than the trivial bound which is:

$$
\sum_{a<y, a^{d} \equiv 1(n)} 1=\frac{y}{n} b_{n}(d)+O\left(b_{n}(d)\right) .
$$

3. Proof of Theorems

3.1. Proof of Theorem 1.1. We start with the change of order in summation:

$$
\begin{aligned}
\sum_{a<y} \sum_{n<x} l_{a}(n)= & \sum_{d<x} d \sum_{\substack{n<x \\
d \mid \lambda(n)}} \sum_{\substack{a<y \\
l_{a}(n)=d}} 1 \\
= & \sum_{d<x} d \sum_{\substack{n<x \\
d \mid \lambda(n)}} \sum_{\substack{d^{\prime} \mid d \\
b_{n}\left(d^{\prime}\right)<n^{\epsilon}}} \mu\left(\frac{d}{d^{\prime}}\right) \sum_{\substack{a<y \\
a^{d^{\prime}} \equiv 1(n)}} 1+\sum_{d<x} d \sum_{\substack{n<x \\
d \mid \lambda(n)}} \sum_{\substack{d^{\prime} \mid d \\
b_{n}\left(d^{\prime}\right) \geq n^{\epsilon}}} \mu\left(\frac{d}{d^{\prime}}\right) \sum_{\substack{a<y \\
a^{d^{\prime}} \equiv 1(n)}} 1 \\
= & \sum_{d<x} d \sum_{\substack{n<x \\
d \mid \lambda(n)}} \sum_{\substack{d^{\prime} \mid d \\
b_{n}\left(d^{\prime}\right)<n^{\epsilon}}} \mu\left(\frac{d}{d^{\prime}}\right)\left(\frac{y}{n} b_{n}\left(d^{\prime}\right)+O\left(b_{n}\left(d^{\prime}\right)\right)\right) \\
& +\sum_{d<x} d \sum_{\substack{n<x \\
d \mid \lambda(n)}} \sum_{\substack{d^{\prime} \mid d \\
b_{n}\left(d^{\prime}\right) \geq n^{\epsilon}}} \mu\left(\frac{d}{d^{\prime}}\right)\left(\frac{y}{n} b_{n}\left(d^{\prime}\right)+O\left(b_{n}\left(d^{\prime}\right) n^{-\delta}\right)\right) \\
= & \sum_{d<x} d \sum_{\substack{n<x \\
d \mid \lambda(n)}}^{\frac{y}{n} a_{n}(d)+O\left(E_{1}\right)+O\left(E_{2}\right)} .
\end{aligned}
$$

where

$$
\begin{aligned}
E_{1} & =\sum_{d<x} d \sum_{\substack{n<x \\
d \mid \lambda(n)}} \sum_{\substack{d^{\prime} \mid d \\
b_{n}\left(d^{\prime}\right)<n^{\epsilon}}}\left|\mu\left(\frac{d}{d^{\prime}}\right)\right| b_{n}\left(d^{\prime}\right) \\
& \ll \sum_{d<x} d \sum_{\substack{n<x \\
d \mid \lambda(n)}} \sum_{d^{\prime} \mid d} n^{\epsilon} \\
& \ll \sum_{d<x} d \tau(d) \sum_{\substack{n<x \\
d \mid \lambda(n)}} n^{\epsilon} \\
& =\sum_{n<x} n^{\epsilon} \sum_{d \mid \lambda(n)} d \tau(d) \\
& \ll x^{2+\epsilon+o(1)}
\end{aligned}
$$

and

$$
\begin{aligned}
E_{2} & =\sum_{d<x} d \sum_{\substack{n<x \\
d \mid \lambda(n)}} \sum_{\substack{d^{\prime} \mid d \\
b_{n}\left(d^{\prime}\right) \geq n^{\epsilon}}}\left|\mu\left(\frac{d}{d^{\prime}}\right)\right| b_{n}\left(d^{\prime}\right) n^{-\delta} \\
& \ll \sum_{d<x} d \sum_{\substack{n<x \\
d \mid \lambda(n)}} b_{n}(d) n^{-\delta} \sum_{d^{\prime} \mid d} 1 \\
& =\sum_{n<x} \sum_{d \mid \lambda(n)} d b_{n}(d) \tau(d) n^{-\delta} \\
& \leq \sum_{n<x} n^{1-\delta} \sum_{d \mid \lambda(n)} d \tau(d) \\
& \ll x^{3-\delta+o(1)} .
\end{aligned}
$$

Now we treat the main term:

$$
\sum_{d<x} d \sum_{\substack{n<x \\ d \mid \lambda(n)}} \frac{1}{n} a_{n}(d)=\sum_{n<x} \frac{1}{n} \sum_{d \mid \lambda(n)} d a_{n}(d) .
$$

Taking δ to satisfy $2+\epsilon \leq 3-\delta$, we have

$$
\sum_{a<y} \sum_{n<x} l_{a}(n)=y \sum_{n<x} \frac{1}{n} \sum_{d \mid \lambda(n)} d a_{n}(d)+O\left(x^{3-\delta+o(1)}\right) .
$$

Let $u(n)=\frac{1}{\phi(n)} \sum_{d \mid \lambda(n)} d a_{n}(d)$ be the average multiplicative order of the elements of $(\mathbb{Z} / n \mathbb{Z})^{*}$. The following is proven in [LS, Theorem 6]:

Theorem 3.1.

$$
\frac{1}{x} \sum_{n<x} u(n)=\frac{x}{\log x} \exp \left(B \frac{\log \log x}{\log \log \log x}(1+o(1))\right) .
$$

What we have for the main term is the middle term in the following inequalities:

$$
\frac{1}{\log \log x} \sum_{n<x} u(n) \ll \sum_{n<x} \frac{\phi(n)}{n} u(n) \leq \sum_{n<x} u(n) .
$$

Since $\log \log \log x=o\left(\frac{\log \log x}{\log \log \log x}\right)$, it follows that

$$
\sum_{n<x} \frac{\phi(n)}{n} u(n)=\frac{x^{2}}{\log x} \exp \left(B \frac{\log \log x}{\log \log \log x}(1+o(1))\right) .
$$

Hence, we have

$$
\sum_{a<y} \sum_{n<x} l_{a}(n)=\frac{y x^{2}}{\log x} \exp \left(B \frac{\log \log x}{\log \log \log x}(1+o(1))\right)+O\left(x^{3-\delta+o(1)}\right) .
$$

Moreover, if for some $0<\delta^{\prime}<\delta$, and $x^{1-\delta^{\prime}}=o(y)$, then the error term can be included in the term with $o(1)$. The terms that appear when $n \leq a$, are also included in the term with $o(1)$. This completes the proof of Theorem 1.1.

References

[B] J. Bourgain, Exponential sum estimates over subgroups of \mathbb{Z}_{q}^{*}, q arbitrary, Journal d'Analyse Mathematique, December 2005, Volume 97, Issue 1, pp 317-355.
[EPS] P. Erdős, C. Pomerance, E. Schmutz, Carmichael's Lambda Function, Acta Arithmetica, LVIII4, 1991.
[ET] P. Erdős, P. Turán, On a Problem in the Theory of Uniform Distribution I, II, Nederll. Akad. Wetensch, 51, pp. 1146-1154, 1262-1269.
[KP] P. Kurlberg, C. Pomerance, On a Problem of Arnold: the average multiplicative order of a given integer, Algebra and Number Theory, 7 (2013), pp. 981-999.
[KP2] P. Kurlberg, C. Pomerance, On the period of the linear congruential and power generators, Acta Arith. 119 (2005), pp. 305-335.
[LS] F. Luca and I. E. Shparlinski, Average multiplicative orders of elements modulo n, Acta Arith., 109(4): pp. 387-411, 2003.
[M] H. Montgomery, Ten Lectures on the Interface Between Analytic Number Theory and Harmonic Analysis, CBMS Regional Conference Series in Mathematics, Number 84, AMS.
[MRS] C. Mauduit, J. Rivat, A. Sárkőzy, On the Pseudo-Random Properties of n^{c}, Illinois Journal of Mathematics, Volume 46, Number 1, Spring 2002, pp. 185-197.
[W] H. Weyl, Über ein Problem aus dem Gebiete der diophantischen, Ges. Abh. I (Springer: Berlin 1968), 487-497. Approximationen

