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Abstract. For a field of definition k of an abelian variety A and prime
ideal p of k which is of a good reduction for A, the structure of A(Fp)
as abelian group is:

(1) A(Fp) ' Z/d1(p)Z⊕ · · · ⊕ Z/dg(p)Z⊕ Z/e1(p)Z⊕ · · · ⊕ Z/eg(p)Z,
where di(p)|di+1(p), dg(p)|e1(p), and ei(p)|ei+1(p) for 1 ≤ i < g.

We are interested in finding an asymptotic formula for the number
of prime ideals p with Np < x, A has a good reduction at p, d1(p) = 1.
We succeed in proving this under the assumption of the Generalized
Riemann Hypothesis (GRH). Unconditionally, we achieve a short range
asymptotic for abelian varieties of CM type, and the full cyclicity theo-
rem for elliptic curves over a number field containing the CM field.

1. Introduction

Let E be an elliptic curve over Q. If p is a prime of good reduction for
E, then the structure of the reduction modulo p is well-known:

Z/dpZ⊕ Z/epZ
where dp|ep. The cyclicity problem was originally proposed by J. P. Serre
and proved under the Generalized Riemann Hypothesis (GRH). Let N be
the conductor of elliptic curve E and denote by f(x,E) the number of primes
p ≤ x of good reduction for E such that dp = 1. A. Cojocaru and M. R.
Murty obtained that if E does not have a complex multiplication (non-CM),
then

f(x,E) = CELi(x) +ON (x5/6(log x)2/3),

under the GRH for the Dedekind zeta functions of division fields. If E has
a complex multiplication (CM), they obtained

f(x,E) = CELi(x) +ON (x3/4(logNx)1/2),

under the GRH for the Dedekind zeta functions of division fields. Uncondi-
tional error term in CM case is O(x log−A x) for any positive A. In fact, R.
Murty [M] obtained an asymptotic formula with that error term, and it was
reformulated by A. Akbary and V. K. Murty [AM]:

f(x,E) = CELi(x) +OA,B(x log−A x),

for arbitrary positive constants A,B, and the implied constant in OA,B is

uniform for N ≤ (log x)B. Here, CE =
∑∞

m=1
µ(m)

[Q(E[m]):Q] .

1
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We are able to generalize to CM elliptic curves defined over a number
field L containing the CM field K. Here, f(x,E) is the number of OL-prime
ideals p with Np ≤ x of good reduction for E such that dp = 1.

Theorem 1.1. Let E be a CM elliptic curve over a number field L contain-
ing the CM field K. Let A > 0 be any positive number. Then we have

(2) f(x,E) = CELi(x) +OA

(
x

logA x

)
where

CE =

∞∑
m=1

µ(m)

[L(E[m]) : L]
.

We are interested in extending this to abelian varieties. Let A be a g-
dimensional (g ≥ 2) abelian variety defined over a number field k. Let p be
a prime in k such that A has a good reduction at p, and denote by A(Fp)
the reduction of A modulo p. It is known that A(Fp) has an abelian group
structure

A(Fp) ' Z/d1(p)Z⊕ · · · ⊕ Z/dg(p)Z⊕ Z/e1(p)Z⊕ · · · ⊕ Z/eg(p)Z,
where di(p)|di+1(p), dg(p)|e1(p), and ei(p)|ei+1(p) for 1 ≤ i < g. We are in-
terested in finding the statistics of these numbers di(p), and ei(p). However,
obtaining any general information regarding d2(p) through eg(p) is out of
reach within current methods. We focus on investigating d1(p), especially
the density of prime ideals p such that d1(p) = 1.

By Weil’s Riemann Hypothesis for abelian varieties (see [W]), we have
the following upper bound for d1(p):

d1(p)2g ≤ |A(Fq)| ≤ (
√
q + 1)2g,

where q = Np.
The cyclicity problem for elliptic curves, concerns about the density of

primes p that the reduction of the curve modulo p is cyclic. (see [C], [AM])
This is originally proposed by J. P. Serre, and proved under the GRH.
Then R. Murty gave a general framework for various problems of this type.
(see [M]) Upon generalization of cyclicity problem to higher dimensional
abelian varieties, we have a huge technical difficulty in requiring A(Fq) to
be cyclic. This could be done by requiring dp = 1 in g = 1 case, but for
higher dimensional case, it is clearly not enough to give cyclicity. Instead,
we look for the density of primes p which A(Fp) have d1(p) = 1. Applying R.
Murty’s framework for abelian varieties, A. Akbary and D. Ghioca (see [AG,
Theorem 1.4]) obtained the analogous theorem for abelian varieties: Let A
be an abelian variety defined over Q, and assume that the GRH holds for
each extension Q(A[m])/Q. Then the number of primes p ≤ x such that
d1(p) = 1 satisfies the asymptotic formula

(3)

∞∑
m=1

µ(m)

[Q(A[m]) : Q]
Li(x) + o

(
x

log x

)
.
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We are able to formulate the obvious analogue for abelian variety defined
over a number field k:

The number of prime ideals p with Np ≤ x and d1(p) = 1 satisfies

(4)
∞∑
m=1

µ(m)

[k(A[m]) : k]
Li(x) + o

(
x

log x

)
,

under the GRH for the extension k(A[m]) over k. Our interest is obtaining
similar theorems unconditionally with additional assumption on the abelian
variety A, especially abelian varieties of CM type. The following conjecture
is what we expect:

Conjecture 1.1. Let A be an abelian variety of CM type (K,Φ, a) of di-
mension g defined over a number field k. Then for any B > 0,

(5)
∑
Np≤x
d1(p)=1

1 = cALi(x) +OA,B

(
x

logB x

)
,

where

cA =
∞∑
m=1

µ(m)

[k(A[m]) : k]
.

A motivation of this conjecture is the change of order of summation:∑
Np≤x

∑
m|d1(p)

µ(m) =
∑

m≤
√
x+1

µ(m)
∑
Np≤x
m|d1(p)

1

=
∑

m≤
√
x+1

µ(m)πA(x;m).

Applying the number field analogue of Brun-Titchmarsh inequality due
to J. Hinz and M. Lodemann (see [HL, Theorem 4]), we obtain a bound for
πA(x;m).

(6) πA(x;m)� x

[k(A[m]) : k]
,

provided that 2N(mf) < x, and the implied constant depends on A. The
nonzero integer f is the integer from Lemma 2.1.

Thus, this bound is only applicable for small values of m. As A. Akbary
and D. Ghioca pointed out in [AG], the main difficulty is to deal with large
values of m, in which we do not know how to obtain such bound when m is
close to

√
x. Even when we assume the GRH for Dedekind zeta functions

of division fields, we do not have a uniform bound that controls the case
m ∼

√
x. What we obtain an asymptotic formula in a short range instead

of Conjecture 1.1:

Theorem 1.2. Let A be an absolutely simple abelian variety of CM type
(K,Φ, a) of dimension g ≥ 2 defined over a number field k, and (K ′,Φ′) be
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its reflex type with [K ′ : Q] = 2g′. Let [k : Q] = 2l ≥ 2g′. Then there exists
a constant c depending only on A such that for any B > 0,

(7)
∑

m<cx
1
2l

µ(m)πA(x;m) = cALi(x) +OA,B

(
x

logB x

)
,

where

cA =

∞∑
m=1

µ(m)

[k(A[m]) : k]
.

Since A is of CM-type, we actually have

(8) πA(x;m)� xg

m2g
,

for all m ≤
√
x + 1. As it was pointed out by [AG, (4.5)], we are able to

use the above when m > x
g

2g+1 log
1

2g+1 x. Under the GRH for Dedekind zeta

functions of division fields, we can deal with the sum overm ≤ x
g

2g+1 log
1

2g+1 x
easily. Thus, we see that Conjecture 1.1 is true under the GRH for Dedekind
zeta functions of division fields with better error terms.

We turn our interest to the average behavior of d1(p). Now, we consider
the case g ≥ 2. By Lemma 2.3, we have the convergence of

CA =
∞∑
m=1

ϕ(m)

[k(A[m]) : k]
.

In fact, the convergence of this constant is the major difference between
g = 1 (CM elliptic curves) and g ≥ 2 (abelian varieties of CM type). As
before, we conjecture an upper bound result, and prove unconditional upper
bound of a short range sum, and finally unconditional lower bound:

Conjecture 1.2. Let A, (K,Φ), (K ′,Φ′), k be the same notations as above.
Under the same hypotheses as in Theorem 1.2, for any positive B,

(9)
∑
Np≤x

d1(p) = CALi(x) +OA,B

(
x

logB x

)
.

Theorem 1.3. Let A, (K,Φ), (K ′,Φ′), k, g, g′, l be the same notations as
above. Under the same hypotheses as in Theorem 1.2, for any positive B,
there exists a positive constant c depending on A, such that for any B > 0,

(10)
∑

m≤cx
1
2l

ϕ(m)πA(x;m) = CALi(x) +OA,B

(
x

logB x

)
.

Theorem 1.4. Let A, (K,Φ), (K ′,Φ′), k be the same notations as above.
Under the same hypotheses as in Theorem 1.2, for any positive B,

(11)
∑
Np≤x

d1(p) ≥ CALi(x) +OA,B

(
x

logB x

)
.
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This is a direct consequence of Theorem 1.3:∑
Np≤x

d1(p) =
∑

m<
√
x+1

ϕ(m)πA(x;m)

≥
∑

m≤cx
1
2l

ϕ(m)πA(x;m)

= CALi(x) +OA,B

(
x

logB x

)
.

We remark that the Conjectures 1.1 and 1.2 are true with a stronger error
term under GRH for the Dedekind zeta function of division fields, and it
can be generalized to:

Theorem 1.5. Let A be an absolutely simple abelian variety of CM type
(K,Φ, a) of dimension g defined over a number field k, and (K ′,Φ′) be its
reflex type with [K ′ : Q] = 2g′. Let [k : Q] = 2l ≥ 2g′. Let f : N −→ C be an
arithmetic function satisfying

f(m) = O(mα),

with 0 < α < 1
2g−1 . Assume GRH for the Dedekind zeta function of division

fields, then

(12)
∑

m≤
√
x+1

f(m)πA(x;m) = cf,ALi(x) +OA,ε(x
4g+2gα−α−1

4g
+ε

).

where

cf,A =

∞∑
m=1

f(m)

[k(A[m]) : k]
.

We also remark that the Theorems 1.2, 1.3, and 1.5 can be generalized to
the following:

Theorem 1.6. Let A be an absolutely simple abelian variety,(K,Φ), (K ′,Φ′), k
be the its CM-type, reflex type, and field of definition respectively. Let
[K : Q] = 2g, [K ′ : Q] = 2g′, and [k : Q] = 2l ≥ 2g′. Let f : N −→ C
be an arithmetic function satisfying the growth condition:

f(m) = O(mα),

for some α < 2. Then there exists a constant c > 0 depending only on A
such that for any B > 0,

(13)
∑

m<cx
1
2l

f(m)πA(x;m) = cf,ALi(x) +OA,B

(
x

logB x

)
,

where

cf,A =

∞∑
m=1

f(m)

[k(A[m]) : k]
.
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A natural question on the constant cA,k =
∑∞

m=1
µ(m)

[k(A[m]):k] is whether

we can determine the sign of it. In general, this is a very difficult problem
because of µ(m). Assume GRH for the division fields k(A[m]) over k. Let
k1 be a finite extension of the field of definition k. Assume also GRH for

the division fields k1(A[m]) over k1 and let cA,k1 =
∑∞

m=1
µ(m)

[k1(A[m]):k1] . Then

the constants cA,k and cA,k1 are related by an inequality cA,k ≥ 1
[k1:k]cA,k1 .

We prove this using (4). The number of primes p in k with Np ≤ x and
d1(p) = 1 is

∞∑
m=1

µ(m)

[k(A[m]) : k]
Li(x) + o

(
x

log x

)
.

We provide a subset of those primes which has positive density. Consider
the finite extension k1, then the number of primes P in k1 with NP ≤ x
and d1(P) = 1 is

∞∑
m=1

µ(m)

[k1(A[m]) : k1]
Li(x) + o

(
x

log x

)
Consider a prime p in k that lies below P. Since A(Ok/p) forms a subgroup
of A(Ok1/P) which is fixed by the Frobenious automorphism, it follows that

d1(P) = 1 implies d1(p) = 1.

Therefore, the correspondence P 7→ p gives ”(at most [k1 : k])-to-one” map-
ping. Hence the set {Np ≤ x | d1(p) = 1} contains a subset of size at
least

1

[k1 : k]

∞∑
m=1

µ(m)

[k1(A[m]) : k1]
Li(x) + o

(
x

log x

)
.

This proves the following theorem:

Theorem 1.7. Let A, (K,Φ), (K ′,Φ′), k be the same notations as above, and
k1 be a finite extension of k. Assume the GRH for Dedekind zeta functions
of division fields k(A[m]) over k, and k1(A[m]) over k1. Then we have

∞∑
m=1

µ(m)

[k(A[m]) : k]
≥ 1

[k1 : k]

∞∑
m=1

µ(m)

[k1(A[m]) : k1]
.

It will be an interesting problem to look for an unconditional proof of
this.

A difficulty in achieving Conjectures 1.1, and 1.2 is an insufficient infor-
mation on πA(x; (mf), ai) where N(mf) > x/2. However, it is possible to
achieve some information on the numbers t(m) in Lemma 2.2 on average in
special cases:

Theorem 1.8. Let A be an absolutely simple abelian variety of dimension
2 defined over a degree 4 CM-field with CM-type (K,Φ, a). Suppose that the



AVERAGE BEHAVIORS OF INVARIANT FACTORS IN CM CASE 7

reflex type (K ′,Φ′, a′) satisfies K = K ′. Then we have∑
m<
√
x

t(m)�K x exp(−1

6
(log x)2/5).

The significance in this theorem is that this opens up a possibility of
proving a special case g = 2 of Conjecture 1.1 unconditionally. If we are
able to prove

πA(x; (mf), ai)�K (log x)B

for some positive absolute constant B in the case N(mf) > x/2, then this
would provide an unconditional proof of Conjecture 1.1 under the hypotheses
of Theorem 1.8.

2. Preliminaries

2.1. Abelian Varieties of CM type. The CM theory can be generalized
to abelian varieties. The endomorphism rings of abelian varieties are far
more complex than those of elliptic curves. However, their center (as an
algebra) can be described via CM-field (see [L, p6, Theorem 1.3]):

Definition 2.1. A CM-field is a totally imaginary quadratic extension of a
totally real number field.

Theorem 2.1. Let A be an abelian variety. Then the center K of EndQA :=
EndA⊗Q is either a totally real field or a CM field.

Furthermore, we have by the following proposition (see [Sh, p36, Propo-
sition 1]) that the degree of K in above theorem is bounded by 2dimA.

Proposition 2.1. Let A be an abelian variety of dimension g and S a
commutative semi-simple subalgebra of EndQA. Then we have

[S : Q] ≤ 2g.

In particular, K ⊂ S, which gives [K : Q] ≤ [S : Q] ≤ 2g. We are
interested in the case that [K : Q] = 2g, and K is a CM field. The following
definition generalizes complex multiplication of elliptic curves to abelian
varieties. (see [Sh, p41, Theorem 2], also [L, p72])

Theorem 2.2. Let A be an abelian variety of dimension g. Suppose that
the center of EndQA is K, and K is a CM field of degree 2g over Q. We say
that A admits complex multiplication. In this case, there is an ordered set
Φ = {φ1, · · · , φg} of g distinct isomorphisms of K into C such that no two
of them is conjugate. We call this pair (K,Φ) the CM-type. Furthermore,
there exists a lattice a in K such that there is an analytic isomorphism
θ : Cg/Φ(a) −→ A(C). We write (K,Φ, a) to indicate a is a lattice in K
with respect to θ. In short, we say that A is of type(CM-type) (K,Φ, a) with
respect to θ. Under the inclusion i : K −→ EndQA, we have that

O = {τ ∈ K|i(τ) ∈ EndA} = {τ ∈ K|τa ⊂ a}
is an order in K.
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This gives rise to the following composition:

Corollary 2.1. Let A be an abelian variety of dimension g with CM-type
(K,Φ, a) with respect to θ. Then θ ◦ Φ maps K/a to Ator, i. e.

K/a
Φ−−−→ Cg/Φ(a)

θ−−−→ Ator.

Proof. This is clear from noticing that a⊗Q = K. Also, Φ is Q-linear, and
Φ(a)⊗Q is a torsion subgroup of Cg/Φ(a). �

We define a reflex-type of a given CM-type. (see [Sh, p59-62])
Let K be a CM-field of degree 2g, Φ = {φ1, · · · , φg} a set of g embeddings

of K into C so that (K,Φ) is a CM-type. Let L be a Galois extension of Q
containing K, and G the Galois group of L over Q. Let ρ be an element of
G that induces complex conjugation on K. Let S be the set of all elements
of G that induce φi for some i = 1, · · · , g.

A CM-type is called primitive if any abelian variety with the type is
simple. The following proposition gives a criterion for primitiveness of CM-
type. (see [Sh, p61, Proposition 26])

Proposition 2.2. Let (K,Φ) be a CM-type. Let L, G, ρ, S as above, and
H1 the subgroup of G corresponding to K. Put

HS = {γ ∈ G|γS = S}.
Then (K,Φ) is primitive if and only if H1 = HS.

The following proposition relates a CM-type (K,Φ) and a primitive CM-
type (K ′,Φ′). (see [Sh, p62, Proposition 28])

Proposition 2.3. Let L, G, ρ, S as above. Put

S′ = {σ−1|σ ∈ S}, HS′ = {γ ∈ G|γS′ = S′}.
Let K ′ be the subfield of L corresponding to HS′, and let Φ′ = {ψ1, · · · , ψg′}
be a set of g′ embeddings of K ′ to C so that no two of them are conjugate.
Then (K ′,Φ′) is a primitive CM-type.

We call (K ′,Φ′) the reflex of CM-type (K,Φ). We define a type norm for
a given CM-type. The following map is well defined on K ′×:

N(K′,Φ′) : K ′× −→ K×, x 7→
∏
σ∈Φ′

σ(x).

Then this map allows an extension to N(K′,Φ′) : A×K′ −→ A×K . This extension
is called the type norm. It can be seen that N(K′,Φ′) is a continuous homo-

morphism on A×K′ . (see [Sh, p124]) The field of definition k of an abelian
variety A with CM-type (K,Φ) contains the reflex K ′. In brief, k ⊃ K ′.
Thus, we can also define the type norm on the field of definition:

NΦ′k
= N(K′,Φ′)Nk|K′

where Nk|K′ is the standard norm map of ideles. Note that if g = 1 (elliptic
curves) then K = K ′.
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Denote by A×k , A×K the group of ideles of number fields k and K respec-
tively. The following theorem is a version of the Main Theorem of Complex
Multiplication for abelian varieties: (see [L, Theorem 1.1, p84])

Proposition 2.4 (Main Theorem of Complex Multiplication). Let A be an
abelian variety of dimension g with CM type (K,Φ, a) with respect to θ, and
defined over a number field k. Then:
(i) The extension k(Ator) : k is abelian.
(ii) There exists a unique character

α : A×k → K×

having the following property. If we define

ψA(s) = α(s)NΦ′k
(s−1), for s ∈ A×k ,

then the diagram is commutative:

K/a
θ·Φ - Ator

	

K/a

ψA(s)

?
θ·Φ - Ator

[s,k]

?

(iii) This character α satisfies α(s)α(s) = N(s) and α(s)a = NΦ′k
(s)a.

Here, the map ψA(s) on the downward arrow on the left side acts as the
multiplication by an idele, and the map [s, k] on the right side acts as the
element of Gal(k/k) corresponding to the idele s by Artin’s reciprocity law.
Now, we are ready to state the analogue of [M, p 162, Lemma 4]. The idea
of the proof is the same as in [M], but we need a modification due to type
norm factor in the Main Theorem of Complex Multiplication.

Lemma 2.1. Let A, (K,Φ), (K ′,Φ′), k be the same notations as before. Let
m ≥ 2 be an integer. Then there exists a nonzero rational integer f such
that

k(A[m]) ⊂ k(mf),

where k(mf) is the ray class field corresponding to the principal ideal (mf) ⊂
k.

Proof. By class field theory and Artin’s reciprocity, we need to find a sub-
group H of A×k such that k(A[m]) is a fixed field of H. Let ξ = θ ◦Φ. Then

ξ(x) is fixed by elements [s, k] for all s ∈ H and for all x ∈ 1
ma/a. By the

Main Theorem of Complex Multiplication, the following condition should
hold:

ξ(ψA(s)x) = ξ(x) for all x ∈ 1

m
a/a.
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Thus, ψA(s)x = x for all x ∈ 1
ma/a. This is equivalent to

ψA(s)x ≡ x (mod a) for all x ∈ 1

m
a

Then we have

(ψA(s)− 1)
1

m
a ⊂ a.

We see that x = ψA(s)−1
m belongs to the set:

Xa := {x ∈ A×K |xa ⊂ a}.

Denote by a⊗ZZp the ap, a lattice in K⊗QQp. Denote by RK the subset of
A×K such that every component is integral with respect to each place (infinite
places included). If x ∈ Xa, then xpap ⊂ ap. Therefore,

H = {s ∈ A×k |
ψA(s)− 1

m
∈ Xa},

Since any order in K contains a nonzero integral ideal, there exists a nonzero
rational integer f independent of m such that:

fRK ⊂ Xa ⊂ RK .

and

{s ∈ A×k |
ψA(s)− 1

m
∈ fRK} ⊂ H ⊂ {s ∈ A×k |

ψA(s)− 1

m
∈ RK}.

This can be rewritten as

{s ∈ A×k | ψA(s) ∈ UK,(fm)} ⊂ H ⊂ {s ∈ A×k | ψA(s) ∈ UK,(m)},

where (fm) and (m) are principal ideals generated by fm and m respec-
tively. Simply, we have

{s ∈ A×k | NΦ′k
(s−1) ∈ K×UK,(fm)} ⊂ H ⊂ {s ∈ A×k | NΦ′k

(s−1) ∈ K×UK,(m)}.

Equivalently,

{s ∈ A×k | NΦ′k
(s) ∈ K×UK,(fm)} ⊂ H ⊂ {s ∈ A×k | NΦ′k

(s) ∈ K×UK,(m)}.

Then the conclusion follows since we have

Uk,(fm) ⊂ {s ∈ A×k | NΦ′k
(s) ∈ K×UK,(fm)}.

�

A direct corollary of Lemma 2.1 is the following:

Lemma 2.2. Let A, (K,Φ), (K ′,Φ′), k be the same notations as before. Sup-
pose also that p ⊂ k is a prime of good reduction for A, and p - m. Let f
be the nonzero integer as in Lemma 2.1. Given m ≥ 1, there are t(m) ideal
classes modulo (mf) ⊂ k such that

p splits completely in k(A[m]) if and only if p ∼ a1, · · · , p ∼ at(m).
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Furthermore, t(m) satisfies the following identity by class field theory,

t(m)

h(mf)
=

1

[k(A[m]) : k]
.

By Lemma 2.3 below, there is an absolute positive constant c depending only
on A such that

t(m) =
h(mf)

[k(A[m]) : k]
≤ m2l−ν

T (mf)
cw(m) ≤ mN

T (mf)
,

where N = N(A) is an integer depending only on A.

We also have a bound on extension degree of division fields. (see [Ri,
Theorem 1.1])

Lemma 2.3. Let A be an abelian variety of CM type (K,Φ, a) of dimension
g defined over a number field k. Then for some c1, c2 > 0, nm = [k(A[m]) :
k] satisfies

mνc
w(m)
1 ≤ nm ≤ mνc

w(m)
2 ,

where w(m) is the number of distinct prime factors of m, ν is an inte-
ger defined by Rank(Φ,K), and 2 + log2 g ≤ ν ≤ g + 1 if A is absolutely
simple. Since the reflex type (Φ′,K ′) is always simple and Rank(Φ,K) =
Rank(Φ′,K ′), we also have that 2 + log2 g

′ ≤ ν ≤ g′ + 1 if [K ′ : Q] = g′.
Thus, we have

max(2 + log2 g, 2 + log2 g
′) ≤ ν ≤ min(g + 1, g′ + 1).

2.2. Analytic Background. LetK be a number field of degree n = r1+2r2

with ring of integers OK and r1 the number of distinct real embeddings of
K, and let m be an integral ideal of K. Define a m-ideal class group by an
abelian group of equivalence classes of ideals in the following relation:

a ∼ b (mod m),

if ab−1 = (α), α ∈ K, α ≡ 1 (mod m), and α is totally positive. Let
α, β ∈ K. Denote by α ≡ β (mod* m) if vp(m) ≤ vp(α− β) for all primes p
and αβ−1 is totally positive. Then we can rewrite the equivalence relation
∼ by

ab−1 ∈ Pm
K = {(α) : α ≡ 1 (mod* m)}.

The m-ideal class group coincides with our definition Cm(K) = Jm
K/P

m
K in

the previous chapter. Denote by h(m) the cardinality of Jm
K/P

m
K , and h by

the class number of K. We have a formula that relates h(m) and the class
number h of K. This follows from an exact sequence:

U(K) −→ (OK/mOK)× ⊕ {±1}r1 −→ Cm(K) −→ C(K) −→ 1.

Denote by T (m) the cardinality of the image of the unit group U(K) in
(OK/mOK)× ⊕ {±1}r1 . Then we have

h(m) =
2r1hϕ(m)

T (m)
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where ϕ(m) = |(OK/mOK)×|. J. Zelinsky [Z, Corollary 12] gave a lower
bound of T (m) for nonzero integral ideals m ⊂ K:

Lemma 2.4 (Zelinsky). Let K be a number field such that OK has infinitely
many units. Then there is a constant c > 1 depending only on K such that

T (m)� logcNm,

uniformly on m.

Proof. The proof of this follows by considering a unit a with infinite order in
(OK)×. Assume that m|(ak − 1) then Nm ≤ N(ak − 1). There is a constant
C > 1 depending only on a such that |N(ak−1)| ≤ Ck. Thus, k ≥ logC Nm
and this completes the proof. �

Let 1 ≤ m < x be an integer, then we can improve this result on principal
ideals (m) for almost all m:

Theorem 2.3. Let K be a number field such that OK has infinitely many
units. Then we have

T ((m))� (log x)
1
2

(log x)2/5

for almost all integer 1 ≤ m < x, and the number of exceptional m’s is
O(x exp(−2

5(log x)3/5)). The implied constants depend only on K.

A crucial point in measuring the size of exceptional set of m’s, we need the
following classical result on number of integers composed of small primes.
(see [MV, Corollary 7.9]):

Proposition 2.5. Let ψ(x, y) be the number of all positive integers composed

of primes ≤ y. If y = (log x)a and 1 ≤ a ≤ (log x)1/2/(2 log log x), then

ψ(x, y) < x1−1/a exp

(
(log a+O(1)) log x

a log log x

)
.

Another big idea in proving Theorem 2.3 is from P. Erdos and R. Murty [EM].
They show in their introduction that for integer a ≥ 2, there are at most
O(x/(log x)3) primes p ≤ x such that the order f(p) of a modulo p is less
than

√
p/ log p. The proof goes as follows:

If f(p) < z then p divides V =
∏
t<z(a

t − 1). Let ω(V ) be the number of
prime divisors of V . Then we have

ω(V )�
∑
t<z

t

log t
� z2

log z
.

For z =
√
x/(log x), it follows that ω(V ) � x/(log x)3. Thus there are at

most O(x/(log x)3) primes p ≤ x such that f(p) <
√
x/(log x).

Proof of Theorem 2.3. Let u be a unit in OK having infinite order. Consider

V =
∏
t<z

(ut − 1).
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Let f(m) be the order of u in (OK/mOK)×. Suppose that f(m) < z, then
we see that f(p) < z for all primes p|m, and m|V . Since u has infinite order
in (OK)×, V is nonzero. Thus, its norm NV = NK

Q V is a nonzero integer.

Since m|V , it is clear that m|NV . By the previous argument, we have

ω(|NV |)�K

∑
t<z

t

log t
�K

z2

log z
.

Thus, m is consisted of at most z2

log z primes. Moreover, the prime divisors of

m are contained in the prime divisors of |NV |. The number of all 1 ≤ m < x
composed in this way is bounded by the number of m composed of the first
ω(|NV |) primes. Thus, it is � ψ(x, cz2) where c depends only on K. Take

z = (log x)
1
2

(log x)2/5 , then the number of 1 ≤ m < x such that f(m) < z is

� x exp
(
−2

5(log x)3/5
)
. This completes the proof. �

Theorem 2.3 can be generalized to integral ideals. We want a lower bound
of T (m) similar to Theorem 2.3 for integral ideal m ⊂ K such that Nm <
x. There is a limitation to the following theorem since this cannot imply
Theorem 2.3. Note that N((m)) = m[K:Q], thus we cannot require m < x.
We need the following analogous proposition to Proposition 2.5:

Proposition 2.6. Let K be a number field. Denote by Ψ(x, y) the number
of all integral ideals m in K with Nm ≤ x composed of prime ideals p with
Np ≤ y. If y = (log x)a and 1 ≤ a ≤ (log x)1/2/(2 log log x), then

Ψ(x, y) < x1−1/a exp

(
(log a+O(1)) log x

a log log x

)
,

where the implied constant depends only on K.

To prove this, we use the Euler product for the Dedekind zeta function
of K:

Ψ(x, y) ≤
∑
Nm≤x

p|m⇒Np≤y

( x

Nm

)σ
≤ xσ

∑
p|m⇒Np≤y

1

Nmσ
= xσ

∏
Np≤y

(
1− 1

Npσ

)−1

.

Theorem 2.4. Let K be a number field with infinite (OK)×. Let m be a
nonzero integral ideal of K, and let T (m) defined as above. Then we have

T (m)� (log x)
1
2

(log x)2/5

for almost all m with Nm < x, and the number of exceptional m’s is
O(x exp(−2

5(log x)3/5)). The implied constants depend only on K.

Proof. Similarly as before, let u be a unit of infinite order. Let V =∏
t<z(u

t − 1). Denote by f(m) the order of u modulo m. Suppose that
f(m) < z for some m with Nm < x. Then m|V . We define ωK(b) for inte-
gral ideals b by the number of distinct prime divisors of b. Taking norms,
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we obtain Nm|NV . As before, we have

ωK(|NV |)�K
z2

log z
.

Take z = (log x)
1
2

(log x)2/5 . We see that Nm is an integer composed of prime
ideal divisors of |NV |. Consider

B = {Nm < x|m is an integral ideal of K composed of prime ideal divisors of |NV |}.

Let F be the set of all integral ideals with Nm < x composed of the first
ωK(|NV |) prime ideals (where prime ideals are arranged in norm-ascending
order), then the above sum is bounded by the cardinality of F . This set has

cardinality � x exp
(
−2

5(log x)3/5
)
, thereby proving the theorem. �

We improve Proposition 2.5 by inserting extra factor Rω(n).

Proposition 2.7. Let R > 1 be fixed. Let ψ2(x, y) be a sum over numbers
composed of primes ≤ y defined by:

ψ2(x, y) =
∑
m<x

p|m⇒p≤y

Rω(m).

If y = (log x)a and 1 ≤ a ≤ (log x)1/2/(2 log log x), then

ψ2(x, y) < x1−1/a exp

(
(log a+O(R)) log x

a log log x

)
.

The proof of this proposition parallels with Proposition 2.5. For,

ψ2(x, y) ≤
∑
n≤x

p|n⇒p≤y

(x
n

)σ
Rω(n) ≤ xσ

∑
p|n⇒p≤y

Rω(n)

nσ
= xσ

∏
p≤y

(
1 +

R

pσ
+

R

p2σ
+ · · ·

)
.

We see that the Dirichlet series part behaves like R-th power of the previous

one in Proposition 2.5. Again with z = (log x)
1
2

(log x)2/5 , we obtain the upper
bound by the above proposition:∑

m∈F
Rω(m) �K,R x exp(−2

5
(log x)3/5).

3. Proof of the theorems

3.1. Proof of Conditional Theorems.

Proof of Theorem 1.5. We begin with:∑
m≤
√
x+1

f(m)πA(x;m) =
∑
m≤y

f(m)πA(x;m) +
∑

y<m≤
√
x+1

f(m)πA(x;m)

= S1 + S2,

where y will be determined later.
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To treat S1, we use the Chebotarev density theorem:

S1 =
∑
m<y

f(m)

(
1

[k(A[m]) : k]
Li(x) +O(x1/2 logmx)

)

=
∑ f(m)

[k(A[m]) : k]
Li(x) +O

(∑
m>y

f(m)

[k(A[m]) : k]

x

log x

)
+O

(∑
m<y

x1/2|f(m)| log x

)
S2 can be bounded by [K, Lemma 5.2]:

S2 �
∑
m>y

mα xg

m2g
� xg

y2g−α−1
.

The error terms can be simplified to:

O

(
x

y log x
+ x1/2yα+1 log x+

xg

y2g−α−1

)
.

Choosing y = xβ with β = (g − 1/2)/(2g), the error terms become

OA,ε(x
4g+2gα−α−1

4g
+ε

).

�

3.2. Proof of Unconditional Theorems.

Proof of Theorem 1.1. We have the following:∑
Np≤x

∑
m|d1(p)

µ(m) =
∑

m≤
√
x+1

µ(m)
∑
Np≤x
m|d1(p)

1

=
∑

m≤
√
x+1

µ(m)πE(x;m)

where πE(x;m) = #{Np < x : p splits completely in L(E[m])}.
Let S1 =

∑
m≤logB1 x, and S2 =

∑
logB1 x<m<

√
x+1 where B1 will be chosen

optimally later. For elliptic curves, we have

(14) πE(x;m)� x

m2

by [K, Lemma 5.2]. Thus, we obtain S2 � x/ logB1 x. Here and after, all
implied constants will depend at most on L.

We treat S1 by Lemma 2.3. In fact,

πE(x;m) =

t(m)∑
i=1

π(x;mf, ai),

where t(m) ≤ mN/T (mf) as in Lemma 2.3. Here, N depends only on E.
We write

π(x;mf, ai) =
Li(x)

h(mf)
+ Ei(x, (mf)).
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Then

πE(x;m) =

t(m)∑
i=1

(
1

h(mf)
Li(x) + Ei(x, (mf))

)

=
1

[L(E[m]) : L]
Li(x) +

t(m)∑
i=1

Ei(x, (mf)).

Therefore,

S1 =
∑

m≤logB1 x

 µ(m)

[L(E[m]) : L]
Li(x) + µ(m)

t(m)∑
i=1

Ei(x, (mf))


= cELi(x) +OE

(
x

logB1 x

)
+OE

 ∑
m≤logB1 x

t(m)max|Ei(x, (mf))|


= cELi(x) +OE

(
x

logB1 x

)
+OE,B2

(
x

logB2 x

)
with

cE =
∞∑
m=1

µ(m)

[L(E[m]) : L]
.

Therefore, the constant cE is nonnegative since it is the asymptotic density
of a certain set of prime ideals. �

Proof of Theorem 1.6. We split the range of sum into two parts S1 =
∑

m≤logB1 x,

and S2 =
∑

logB1 x<m<cx
1
2l

. It is easier to bound S2 as before. We have

S2 � x
logB1 x

by the Brun-Titchmarsh inequality, and Lemma 2.2. For S1,

by Lemma 2.3, we write

πA(x;m) =

t(m)∑
i=1

πA(x; (mf), ai)

=

t(m)∑
i=1

(
1

h(mf)
Li(x) + Ei(x, (mf))

)

=
1

[k(A[m]) : k]
Li(x) +

t(m)∑
i=1

Ei(x, (mf))

where πA(x; (mf), ai) = #{Np ≤ x | p ∼ ai}.



AVERAGE BEHAVIORS OF INVARIANT FACTORS IN CM CASE 17

We substitute this into the sum S1, then by the Bombieri-Vinogradov
theorem, and by Lemma 2.2 we have

S1 =
∑

m≤logB1 x

 f(m)

[k(A[m]) : k]
Li(x) + f(m)

t(m)∑
i=1

Ei(x, (mf))


= cf,ALi(x) +OA

(
x

logB1 x

)
+OA

 ∑
m≤logB1 x

mαt(m)max|Ei(x, (mf))|


= cf,ALi(x) +OA

(
x

logB1 x

)
+OA,B2

(
x

logB2 x

)
where

cf,A =
∞∑
m=1

f(m)

[k(A[m]) : k]
.

Combining the estimates for S1 and S2 finishes the proof. Note that the
assumption α < 2 guarantees the convergence of the series defining cf,A. �

Proof of Theorem 1.8. Recall that

t(m) =
h(mf)

[K(A[m]) : K]
≤ m2g−ν

T (mf)
cw(m)

where f is the integer as in Lemma 2.2 and ν is the integer as in Lemma
2.3. Also, note that the field of definition is assumed to be the CM field K.
Since we have g = 2 in our case, the number ν = 3 is the only possibility by
Lemma 2.3. Thus, we have

t(m) ≤ m

T (mf)
cw(m).

By Dirichlet’s unit theorem, K has infinitely many units. Then by The-
orem 2.3, the for almost all m within 1 ≤ m <

√
x, such that T (mf) �

exp(1
5(log x)2/5). The exceptionalm’s contribute toO(

√
x exp(−1

5(log x)3/5)).
Denote by B the set of these exceptional m’s. Then the summation is
bounded above by:∑

m<
√
x

t(m)�K

∑
m<
√
x

mcw(m)

exp(1
5(log x)2/5)

+
∑
m∈B

mcw(m).

The first sum on the right is bounded above by:
√
x

exp(1
5(log x)2/5)

∑
m<
√
x

cw(m) �K

√
x exp(−1

5
(log x)2/5)

√
x(log x)c−1 � x exp(−1

6
(log x)2/5).

On the second sum, we have the following upper bound:
√
x
∑
m∈B

cw(m).
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Then by Proposition 2.7, the above is bounded by:

√
x
√
x exp(−1

6
(log x)3/5) = x exp(−1

6
(log x)3/5).

Therefore, Theorem 1.8 now follows. �
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