SOME THEOREMS ON MULTIPLICATIVE ORDERS MODULO p ON AVERAGE

KIM, SUNGJIN

ABSTRACT. Let p be a prime, $a \ge 1$, and $\ell_a(p)$ be the multiplicative order of a modulo p. We prove various theorems concerning the averages of $\ell_a(p)$ over $p \le x$ and $a \le y$. We prove that these theorems hold for $y > \exp((\alpha + \epsilon)\sqrt{\log x})$ where $\alpha \approx 3.42$. This is an improvement over $y > \exp(c_1\sqrt{\log x})$ with $c_1 \ge 12e^9$ given in [S2]. We also provide the average of $\tau(\ell_a(p))$ over $p \le x$, $a \le y$, and $y > \exp((\alpha + \epsilon)\sqrt{\log x})$, where $\tau(n)$ is the divisor function $\sum_{d|n} 1$.

1. INTRODUCTION

Let $a \ge 1$ be an integer. We let $\ell_a(n)$ be the multiplicative order of a modulo n if (a, n) = 1. For $(a, n) \ne 1$, $\ell_a(n)$ is defined as in [MS, Section 8]: If we write $n = n_1 n_2$ with any prime divisors of n_1 divide a and $(n_2, a) = 1$, then we let $\ell_a(n) := \ell_a(n_2)$. This way of defining $\ell_a(n)$ is called an extended definition of multiplicative order of a modulo n where the ordinary definition takes $\ell_a(n) = 0$ if $(a, n) \ne 1$. This has an advantage over the ordinary definition that $\ell_a(n)|\phi(n)$ is always true regardless of a and n being coprime. Let $\omega(n) := \sum_{p|n} 1$ be the number of distinct prime divisors of n and $\Omega(n) := \sum_{p|n} 1$ be the number of prime power divisors of n, and set $\omega(1) = \Omega(1) = 0$.

Artin's Conjecture on Primitive Roots (AC) states that for any non-square integer $a \neq 0, \pm 1, \ell_a(p) = p-1$ for infinitely many primes p. Assuming the Generalized Riemann Hypothesis (GRH) for Dedekind zeta functions for Kummerian extensions, Hooley [H] showed that the set of primes with $\ell_a(p) = p - 1$ has a positive density in the set of primes. We may predict that $\ell_a(p)$ would be close to p - 1 for many primes $p \leq x$. In [K2], we also observed that the average of $1/\ell_a(p)$ is small. Precisely, if $\frac{x}{\log x \log \log x} = o(y)$, then

$$\frac{1}{y}\sum_{a \leq y}\sum_{p \leq x}\frac{1}{\ell_a(p)} = \log x + K\log\log x + O(1) + O\left(\frac{x}{y\log\log x}\right)$$

for some explicit constant K. Due to the fact that $1/\ell_a(p)$ is mostly small, the length y of averaging had to be large. For the multiplicative orders on average, we may apply the large sieve inequality and the character sums to reduce y significantly. This was carried out by Stephens (see [S2, Theorem 1]) who showed that if $y > \exp(c_1\sqrt{\log x})$ then for any positive constant B > 1,

$$y^{-1} \sum_{a \le y} \sum_{p \le x} \frac{\ell_a(p)}{p-1} = C \operatorname{Li}(x) + O\left(\frac{x}{\log^B x}\right)$$

where C is the Stephens' constant:

$$C = \prod_{p} \left(1 - \frac{p}{p^3 - 1} \right)$$

and \sum' is the sum over primes $p \leq x$ which are relatively prime to a. Although the value of the positive constant c_1 is not explicitly given in [S2], we see that c_1 is at least $12e^9$. This is because the proof of [S2, Lemma 7] requires the constants c_9 and c_1 to satisfy $c_9 > 0$ and $\log c_1 - c_9 - 2\log 2 - \log 3 > 9$. The optimal value for c_1 using Stephens' method is any positive number greater than $2\sqrt{2}e \approx 7.6885$. See Section 2 for the proof of this claim. This can be done by applying the best known estimates on the smooth numbers [HT, Theorem 1.2] and the asymptotic formula [Br, (1.8)] for Dickman's function $\rho(u)$. We prove that c_1 can be further dropped to $\alpha + \epsilon$ for any $\epsilon > 0$, where $\alpha \approx 3.42$ is the unique positive root of the equation

$$f_1(K) := -\frac{K}{4} + \frac{1}{K} \left(\log \left(\frac{K^2}{2} + 1 \right) + 1 \right) = 0.$$

The corresponding second moment result [S2, Theorem 2] and [S1, Theorem 1, 2] can also be improved. **Theorem 1.1.** If $y > \exp((\alpha + \epsilon)\sqrt{\log x})$, then for any positive constant B > 1,

(1)
$$y^{-1} \sum_{a \le y} \sum_{p \le x} \frac{\ell_a(p)}{p-1} = C \operatorname{Li}(x) + O\left(\frac{x}{\log^B x}\right)$$

Moreover, for any positive constant B > 2,

(2)
$$y^{-1} \sum_{a \le y} \left(\sum_{p < x} \frac{\ell_a(p)}{p - 1} - C \mathrm{Li}(x) \right)^2 \ll \frac{x^2}{\log^B x}.$$

Let $P_a(x) := \{p \le x | \ell_a(p) = p - 1\}$. Then the following estimates also hold:

(3)
$$y^{-1}\sum_{a \le y} P_a(x) = A\mathrm{Li}(x) + O\left(\frac{x}{\log^B x}\right)$$

where $A = \prod_{p} \left(1 - \frac{1}{p(p-1)}\right)$ is the Artin's constant. Moreover, for any positive constant B > 2,

(4)
$$y^{-1} \sum_{a \le y} (P_a(x) - A \operatorname{Li}(x))^2 \ll \frac{x^2}{\log^B x}$$

Stephens also proved in [S2, Theorem 3] that the average number of prime divisors of $a^n - b$ for $p \leq x$ averaged over the pairs (a, b) of integers in the box $(0, y]^2$ is also asymptotic to CLi(x), and proved the corresponding second moment result in [S2, Theorem 4]. The number y is rather large compared to those in [S2, Theorems 1, 2]. $(y > x(\log x)^{c_2}$ in [S2, Theorem 3], and $y > x^2(\log x)^{c_2}$ in [S2, Theorem 4] respectively.) He mentioned that these could probably be improved by using the large sieve inequality as in [S2, Theorems 1, 2]. However, he did not carry out the improvement in [S2]. Here, we state the improvement and prove them.

Theorem 1.2. If $y > \exp((\alpha + \epsilon)\sqrt{\log x})$, then for any positive constant B > 1,

(5)
$$y^{-2} \sum_{a \le y} \sum_{b \le y} \sum_{\substack{p \le x \\ \exists n, p \mid a^n - b}} 1 = C \operatorname{Li}(x) + O\left(\frac{x}{\log^B x}\right).$$

Moreover, for any positive constant B > 2,

(6)
$$y^{-2} \sum_{a \le y} \sum_{b \le y} \left(\sum_{\substack{p \le x \\ \exists n, p \mid a^n - b}} 1 - C \operatorname{Li}(x) \right)^2 \ll \frac{x^2}{\log^B x}.$$

It is well-known by Erdős and Kac [EK] that $\omega(n)$ and $\Omega(n)$ follow a normal distribution after a suitable normalization. More precisely, for any real number u,

$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n \le x : \frac{g(n) - \log \log x}{\sqrt{\log \log x}} \le u \right\} = G(u),$$

where $g(n) = \omega(n)$ or $\Omega(n)$ and $G(u) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{u} \exp\left(-\frac{t^2}{2}\right) dt$.

Let $\phi(n)$ be the Euler Phi function. Erdős and Pomerance [EP] proved that $\omega(\phi(n))$ and $\Omega(\phi(n))$ also follow a normal distribution after a suitable normalization. Thus, for any real number u,

$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n \le x : \frac{g(\phi(n)) - \frac{1}{2}(\log \log x)^2}{\frac{1}{\sqrt{3}}(\log \log x)^{\frac{3}{2}}} \le u \right\} = G(u).$$

They also proved that this holds with $\phi(n)$ replaced by the Carmichael Lambda function $\lambda(n)$ [C, Section 4.6]. Furthermore, they conjectured that for any real number u,

$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n \le x : (n,a) = 1, \ \frac{g(\ell_a(n)) - \frac{1}{2}(\log\log x)^2}{\frac{1}{\sqrt{3}}(\log\log x)^{\frac{3}{2}}} \le u \right\} = \frac{\phi(a)}{a} G(u).$$

In [MS, Section 8, Theorem 4'], Murty and Saidak proved, assuming that the Dedekind zeta function for $\mathbb{Q}(\zeta_q, a^{1/q})$ for primes q does not have zeros on $\Re(s) > \theta$ for some $1/2 \le \theta < 1$ (quasi-Generalized Riemann Hypothesis, quasi-GRH), that for any real number u,

$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n \le x : \frac{g(\ell_a(n)) - \frac{1}{2}(\log \log x)^2}{\frac{1}{\sqrt{3}}(\log \log x)^{\frac{3}{2}}} \le u \right\} = G(u).$$

They used this to prove the conjecture by Erdős and Pomerance conditionally on the quasi-GRH. Throughout this paper, we will always use the extended definition of $\ell_a(n)$ and index p in the summation will be always prime. We provide an unconditional average result as an application of [E, Theorem 12.2].

Theorem 1.3. If $y > \exp((\alpha + \epsilon)\sqrt{\log x})$, then for any fixed real number u,

(7)
$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n \le x : \frac{\frac{1}{y} \sum_{a \le y} g(\ell_a(n)) - \frac{1}{2} (\log \log x)^2}{\frac{1}{\sqrt{3}} (\log \log x)^{\frac{3}{2}}} \le u \right\} = G(u).$$

Another interesting series of problems is to consider averages of the divisor function $\tau(n) = \sum_{d|n} 1$ composed with various arithmetic functions. For the divisor function composed with Euler function and Carmichael λ -function, see [LP2], also [K1]. For the averages of $\tau(\ell_a(p))$, we have the following result.

Theorem 1.4. If $y > \exp((\alpha + \epsilon)\sqrt{\log x})$, then for any B > 1,

(8)
$$\frac{1}{y} \sum_{a \le y} \sum_{p \le x} \tau(\ell_a(p)) = K_1 x + (K_1 + K_2) \mathrm{Li}(x) + O\left(\frac{x}{\log^B x}\right)$$

where

$$K_1 = \prod_p \left(1 + \frac{1}{p^3 - p}\right) \approx 1.231291.$$

Theorem 1.1 and 1.2 improve [S2, Theorem 1, 2, 3, and 4] by providing a wider range of y (These are N in [S2]). The proofs follow closely the method in [S2] where the large sieve inequality and Hölder inequality play crucial roles. The improvements are due to Lemma 3.1 and 3.2 (see \S 3) which replace [S2, Lemma 3 through 7]. Let $\tau_{r,y}(a)$ be the number of ways to write a as an ordered product of r positive integers, each of which is at most y. Let $\tau_r(a)$ be the number of ways to write a as an ordered product of r positive integers. Lemma 3 through 5 in [S2] treat the second moment divisor sum $\sum_{a \leq y^r} (\tau_{r,y}(a))^2$ by replacing one $\tau_{r,y}(a)$ with its maximum, and obtaining an upper bound of the first moment divisor sum $\sum_{a \leq y^r} \tau_{r,y}(a) \leq y^r$. Then Lemma 6 and 7 in [S2] obtain upper bound of the maximum of $\tau_{r,y}(a)$ via the estimates of smooth numbers (see [Br], [HT]). The method presented in this paper follows a different path to treat the second moment divisor sum. Lemma 3.2 gives a combinatorial inequality giving $\left(\sum_{a \leq y} \tau_r(a)\right)^r$ as an upper bound of the second moment divisor sum. Then Lemma 3.1 gives a uniform upper bound for the first moment divisor sum $\sum_{a < y} \tau_r(a)$. The presence of (r-1)! in the denominator in Lemma 3.1 is a main contributor for the improvements. Note also that the lemmas in [S2] do not have this denominator. We may also compare [S2, Lemma 8] and Lemma 3.3, which is applied the proof of Theorems 1.1 through 1.4. The proof of Theorem 1.3 relies on Kubilius-Shapiro Theorem (see $\S7$) and the average estimates for $\omega(\ell_a(p))$ and $\Omega(\ell_a(p))$ (see §6). The proof of Theorem 1.4 is a consequence of a version of Titchmarsh Divisor Problem proved in [F] (see §8). For an earlier version of Titchmarsh Divisor Problem, see [BFI].

2. Optimal Constant in Stephens' Method

We need estimates of smooth numbers in the following form. See [Br, (1.8)] and [HT, Theorem 1.2]. Theorem 2.1 (de Bruijn).

$$\log \rho(u) = -u \left[\log u + \log \log u - 1\right] + O\left(\frac{u}{\log u}\right).$$

Theorem 2.2 (Hildebrand, Tenenbaum).

$$\log(\psi(x,y)/x) = \left\{ 1 + O(\exp(-(\log u)^{3/5 - \epsilon})) \right\} \log \rho(u)$$

where $\max(2, (\log x)^{1+\epsilon}) \le y \le x$.

Combining the above two theorems, we have

$$\log(\psi(x,y)/x) = -u\log u - u\log\log u + u + O\left(\frac{u}{\log u}\right),$$

where $\max(2, (\log x)^{1+\epsilon}) \le y \le x$. We remark that the choice of r is as in [S2].

$$r = \left\lceil \frac{2\log x}{\log N} \right\rceil, \quad N = \exp((\beta \log x)^{\delta}), \quad \delta = \frac{1}{2} + \frac{c}{\log(\beta \log x)}, \quad \text{and } \beta > 2,$$

with $\beta > 2$ and c > 0 are to be determined.

Here, β will replace 9 which appears in $\psi(N, 9 \log x)$ in [S2]. Note that it is assumed $N^r \leq x^8$ in [S2, Lemma 5]. If we require $N^r \leq x^2$, then we may use any $\beta > 2$ in $\psi(N, \beta \log x)$.

The bound given in Stephens result for the character sum S_4 defined in [S2] is

$$S_4 \ll x^{1-\frac{1}{2r}} (x^2 + N^r)^{\frac{1}{2r}} N^{\frac{1}{2}} \psi(N, \beta \log x)^{\frac{1}{2}}.$$

Assuming that $\log N \simeq \sqrt{\log x}$, we have

$$S_4 \ll xN^{-\frac{1}{4}}N^{\frac{1}{2}}N^{\frac{1}{2}}\exp\left[\frac{1}{2}\log\psi(N,\beta\log x)\right] \ll xN\exp\left[-\frac{1}{4}\log N + \frac{1}{2}\log N + \frac{1}{2}\log\frac{\psi(N,\beta\log x)}{N}\right].$$

Recall that we try to obtain a nontrivial cancellation on S_4 rather than the trivial bound xN.

By Theorem 2.2, we are able to write the square of the exponential on the RHS as

$$\exp\left[\frac{1}{2}\log N - u\log u - u\log\log u + u + O\left(\frac{u}{\log u}\right)\right],$$

where $u = \frac{\log N}{\log(\beta \log x)} = \frac{\delta \log N}{\log \log N}$. Substituting u and δ above, and applying $\log(1 + x) = O(x)$ for |x| < 1, we obtain

$$\begin{split} &\exp\left[\frac{1}{2}\log N - u\log u - u\log\log u + u + O\left(\frac{u}{\log u}\right)\right] \\ &= \exp\left[\frac{1}{2}\log N - \frac{\delta\log N}{\log\log N}\left(\log \delta + \log\log N - \log\log\log \log N\right) \\ &- \frac{\delta\log N}{\log\log N}\log\left(\log \delta + \log\log N - \log\log\log \log N\right) + \frac{\delta\log N}{\log\log N} + O\left(\frac{\log N}{(\log\log N)^2}\right)\right] \\ &= \exp\left[\left(\delta - \delta\log \delta\right)\frac{\log N}{\log\log N} - \frac{c\log N}{\log(\beta\log x)} + O\left(\frac{\log N\log\log\log \log N}{(\log\log N)^2}\right)\right] \\ &= \exp\left[\left(1 - \log \delta - c\right)\frac{\log N}{\log(\beta\log x)} + O\left(\frac{\log N\log\log\log N}{(\log\log N)^2}\right)\right]. \end{split}$$

To ensure the nontrivial cancellation, we need to require

$$1 - \log \delta - c < 0$$

Knowing that δ can be made arbitrarily close to 1/2, we require $c > 1 + \log 2$. Putting this back in N and using $\beta > 2$, we need to require

$$N = \exp\left[\left(\beta \log x\right)^{\frac{1}{2} + \frac{c}{\log(\beta \log x)}}\right] > \exp\left[\sqrt{2\log x} \ e^c\right] = \exp\left[\left(2\sqrt{2}e + \epsilon\right)\sqrt{\log x}\right]$$

3. LEMMAS

We begin with the following uniform result on divisor sums (see [B, (1.2)]).

Lemma 3.1. Let $r \ge 1$ and define $\tau_r(a)$ to be the number of ways to write a as an ordered product of r positive integers. If $y \ge 1$, then we have

(9)
$$\sum_{a \le y} \tau_r(a) \le \frac{1}{(r-1)!} y (\log y + r - 1)^{r-1}.$$

Proof. The proof is by induction. The case r = 1 is trivially true. Suppose that we have proved the inequality for a fixed $r \ge 1$. Then we have

$$\sum_{a \le y} \tau_{r+1}(a) = \sum_{d \le y} \sum_{a \le \frac{y}{d}} \tau_r(a) \le \sum_{d \le y} \frac{1}{(r-1)!} \frac{y}{d} \left(\log \frac{y}{d} + r - 1 \right)^{r-1}$$
$$\le \frac{y}{(r-1)!} \left((\log y + r - 1)^{r-1} + \int_1^y \frac{1}{t} \left(\log \frac{y}{t} + r - 1 \right)^{r-1} dt \right)$$
$$\le \frac{y}{r!} \left(r (\log y + r - 1)^{r-1} + (\log y + r - 1)^r \right) \le \frac{y}{r!} (\log y + r)^r.$$

Therefore, we have proved the inequality for r + 1.

One might wonder if we may use a well-known asymptotic formula

$$\sum_{a \le y} \tau_r(a) = \frac{1}{(r-1)!} y(\log y)^{r-1} + O\left(y(\log y)^{r-2}\right).$$

The above formula holds for fixed r and $y \to \infty$. For our purpose, we need to control both r and y at the same time. Thus, Lemma 3.1 in that aspect, will be a better choice than the above formula. Lemma 3.1 has been used in [B] to prove an upper bound of class numbers of number fields.

Corollary 3.1. Let c > 0. If $y \ge 1$ and $r - 1 \le c \log y$, then

(10)
$$\sum_{a \le y} \tau_r(a) \le \frac{(1+c)^{r-1}}{(r-1)!} y \log^{r-1} y.$$

Proof. This follows by applying Lemma 3.1 and replacing r-1 inside the parenthesis by $c \log y$.

We define $\tau_{r,y}(a)$ to be the number of ways of writing a as ordered product of r positive integers, each of which does not exceed y.

Lemma 3.2. We have for any $r \ge 1$ and $y \ge 1$,

(11)
$$\sum_{a \le y^r} (\tau_{r,y}(a))^2 \le \left(\sum_{a \le y} \tau_r(a)\right)^r.$$

Proof. We have

$$\sum_{a \le y^r} (\tau_{r,y}(a))^2 = \sum_{a_1,\dots,a_r \le y} \tau_{r,y}(a_1 \cdots a_r) \le \sum_{a_1,\dots,a_r \le y} \tau_{r,y}(a_1) \cdots \tau_{r,y}(a_r)$$
$$= \left(\sum_{a \le y} \tau_{r,y}(a)\right)^r = \left(\sum_{a \le y} \tau_r(a)\right)^r.$$

Here, the first identity is due to a combinatorial argument. Let a be a positive integer satisfying $a \leq y^r$. Then $\tau_{r,y}(a) > 0$ if and only if $a_1 \cdots a_r = a$ has a solution in positive integers a_1, \ldots, a_r satisfying $a_i \leq y$

KIM, SUNGJIN

for each $i \leq r$. For each fixed a with $\tau_{r,y}(a) > 0$, the r-fold summation will count the number of solutions which is exactly $\tau_{r,y}(a)$.

Combining Lemma 3.2 and Corollary 3.1, we have the following.

Corollary 3.2. Let c > 0. If $y \ge 1$ and $r - 1 \le c \log y$, then

(12)
$$\sum_{a \le y^r} (\tau_{r,y}(a))^2 \le \left(\frac{(1+c)^{r-1}}{(r-1)!} y \log^{r-1} y\right)^r.$$

We use the character sums S_4 and S_{10} in [S2] with a slight modification, and give upper estimates of

(13)
$$S_4 := \sum_{p \le x} \sum_{\chi \pmod{p}}^* \frac{1}{\operatorname{ord}(\chi)} \left| \sum_{a \le y} \chi(a) \right|$$

and

(14)
$$S_{10} := \sum_{p \le x} \sum_{q \le x} \sum_{\chi_1 \pmod{p}} \sum_{\chi_2 \pmod{q}}^* \frac{1}{\operatorname{ord}(\chi_1)\operatorname{ord}(\chi_2)} \left| \sum_{a \le y} \chi_1 \chi_2(a) \right|.$$

The sum \sum^* denotes the sum over non-principal primitive characters and $\operatorname{ord}(\chi)$ denotes the order of the character χ in the corresponding moduli.

Lemma 3.3. If $y > \exp((\alpha + \epsilon)\sqrt{\log x})$, then there is a positive constant c_2 such that

(15)
$$\max(xS_4, S_{10}) \ll x^2 y \exp\left(-c_2 \sqrt{\log x}\right)$$

Proof. As in [S2], we apply the Hölder's inequality and the large sieve inequality. Then for any $r \ge 1$,

$$S_{4} \leq \left(\sum_{p \leq x} \sum_{\chi \pmod{p}}^{*} \left(\frac{1}{\operatorname{ord}(\chi)}\right)^{\frac{2r}{2r-1}}\right)^{1-\frac{1}{2r}} \left(\sum_{p \leq x} \sum_{\chi \pmod{p}}^{*} \left|\sum_{a \leq y} \chi(a)\right|^{2r}\right)^{\frac{1}{2r}}$$
$$\ll \left(\sum_{p \leq x} \tau(p-1)\right)^{1-\frac{1}{2r}} (x^{2}+y^{r})^{\frac{1}{2r}} \left(\sum_{a \leq y^{r}} (\tau_{r,y}(a))^{2}\right)^{\frac{1}{2r}}$$
$$\ll x^{1-\frac{1}{2r}} y \left(\frac{(1+c)^{r-1}}{(r-1)!} (\log y)^{r-1}\right)^{\frac{1}{2}},$$

where the last inequality is by Corollary 3.2 provided if $r - 1 \le c \log y$.

We may assume that $y = \exp(K\sqrt{\log x})$ for a function K := K(x) satisfying $0 < K \le 4\sqrt{\log \log x}$ by [S1, Theorem 1]. This is to look for a possibility of obtaining K smaller than the constant c_1 obtained in [S2, Theorem 1]. Also, we want to choose a positive integer r to satisfy $y^{r-1} < x^2 \le y^r$. Then,

$$\log y = K\sqrt{\log x}$$
, $\log \log y = \log K + \frac{1}{2}\log \log x$, and $r - 1 < \frac{2\log x}{\log y} = \frac{2}{K}\sqrt{\log x} \le r$.

In view of the last inequality for r, it is reasonable to put $c = \frac{2}{K^2}$ for $r - 1 \le c \log y$ to hold. Moreover, by $y^{r-1} < x^2$, we have

$$x^{-\frac{1}{2r}} < y^{\frac{-r+1}{4r}} = y^{-\frac{1}{4} + \frac{1}{4r}},$$

and by $x^2 \leq y^r$ and $\frac{2}{K}\sqrt{\log x} \leq r$, we have

$$y^{\frac{1}{4r}} = \exp\left(K\sqrt{\log x}\frac{1}{4r}\right) \le \exp\left(K\sqrt{\log x}\frac{K}{8\sqrt{\log x}}\right) = \exp\left(\frac{K^2}{8}\right).$$

By Stirling's formula [MV, Theorem C1] and $K \leq 4\sqrt{\log \log x}$, we have

$$S_4 \ll xy \exp\left(-\frac{1}{4}\log y + \frac{r-1}{2}\log\left(1 + \frac{2}{K^2}\right) - \frac{1}{2}\log(r-1)! + \frac{r-1}{2}\log\log y\right)$$
$$\ll xy \exp\left(\sqrt{\log x} \left(-\frac{K}{4} + \frac{1}{K}\log\left(1 + \frac{2}{K^2}\right) - \frac{1}{K}\log 2 + \frac{1}{K} + \frac{2\log K}{K}\right) + O(\log\log x)\right).$$

If $\alpha + \epsilon < K \leq 4\sqrt{\log \log x}$, then we see that

$$-\frac{K}{4} + \frac{1}{K}\log\left(1 + \frac{2}{K^2}\right) - \frac{1}{K}\log 2 + \frac{1}{K} + \frac{2\log K}{K} = f_1(K) < 0$$

This shows that $S_4 \ll xy \exp(-c\sqrt{\log x})$ for some positive constant c.

For S_{10} , we rearrange the sum as follows:

$$\sum_{p \le x} \sum_{q \le x} \sum_{\chi_1 \pmod{p}} \sum_{\chi_2 \pmod{q}}^* \frac{1}{\operatorname{ord}(\chi_1) \operatorname{ord}(\chi_2)} \left| \sum_{a \le y} \chi_1 \chi_2(a) \right| = \sum_{p \le x} \sum_{\chi_1 \pmod{p}} \frac{1}{\operatorname{ord}(\chi_1)} \widetilde{S_4}$$

Fix $p \leq x$ and $\chi_1 \mod p$, then the inner sum $\widetilde{S_4}$ is treated the same way as S_4 . We have

$$\begin{split} \widetilde{S_4} &= \sum_{q \le x} \sum_{\chi_2 \pmod{q}}^* \frac{1}{\operatorname{ord}(\chi_2)} \left| \sum_{a \le y} \chi_1 \chi_2(a) \right| \\ &\leq \left(\sum_{q \le x} \sum_{\chi_2 \pmod{q}}^* \left(\frac{1}{\operatorname{ord}(\chi_2)} \right)^{\frac{2r}{2r-1}} \right)^{1 - \frac{1}{2r}} \left(\sum_{q \le x} \sum_{\chi_2 \pmod{q}}^* \left| \sum_{a \le y} \chi_1 \chi_2(a) \right|^{2r} \right)^{\frac{1}{2r}} \\ &\ll \left(\sum_{q \le x} \tau(q-1) \right)^{1 - \frac{1}{2r}} (x^2 + y^r)^{\frac{1}{2r}} \left(\sum_{a \le y^r} |\tau_{r,y}(a)\chi_1(a)|^2 \right)^{\frac{1}{2r}} \\ &\ll x^{1 - \frac{1}{2r}} y \left(\frac{(1+c)^{r-1}}{(r-1)!} (\log y)^{r-1} \right)^{\frac{1}{2}}. \end{split}$$

The same choice of r and c as in the proof of the bound for S_4 , yields

$$S_{10} \ll \sum_{p \le x} \sum_{\chi_1 \pmod{p}} \frac{1}{\operatorname{ord}(\chi_1)} xy \exp(-c\sqrt{\log x})$$
$$\ll \sum_{p \le x} \tau(p-1)xy \exp(-c\sqrt{\log x}) \ll x^2y \exp(-c\sqrt{\log x}).$$

Note that if $y > \exp(4\sqrt{\log x \log \log x})$ as in [S1, Theorem 1], then it can be proved by the method in [S1, (27)] that the result is stronger in this range of y. In fact, there is a positive constant c_3 such that

$$\max(xS_4, S_{10}) \ll x^2 y \exp\left(-c_3 \sqrt{\log x \log \log x}\right).$$

Thus, we have the result.

4. Proof of Theorem 1.1

In [S2, Theorem 1], Stephens defined a character sum $c_r(\chi)$ where χ is a Dirichlet character modulo p for r|p-1 as

(16)
$$c_r(\chi) = \frac{1}{p-1} \sum_{\substack{a$$

From [S2, Lemma 1], we have for any Dirichlet character χ modulo p,

$$|c_r(\chi)| \le \frac{1}{\operatorname{ord}(\chi)}.$$

For the principal character χ_0 modulo p, we have

$$c_r(\chi_0) = \frac{\phi\left(\frac{p-1}{r}\right)}{p-1}.$$

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1. The contribution of $a \le y$ for which p|a and $p \le x$ is $O(\log \log x)$ since $\ell_a(p) = 1$ in this case. Then

$$y^{-1} \sum_{a \le y} \sum_{\substack{p \le x \\ (a,p)=1}} \frac{\ell_a(p)}{p-1} = y^{-1} \sum_{a \le y} \sum_{\substack{p \le x \\ (a,p)=1}} \sum_{\substack{r|p-1 \\ \ell_a(p)=\frac{p-1}{r}}} r^{-1}$$
$$= y^{-1} \sum_{a \le y} \sum_{p \le x} \sum_{r|p-1} r^{-1} \sum_{\chi \pmod{p}} c_r(\chi) \chi(a)$$
$$= y^{-1} \sum_{p \le x} \sum_{r|p-1} r^{-1} \sum_{\chi \pmod{p}} c_r(\chi) \sum_{a \le y} \chi(a)$$

By Lemma 3.3, the contribution of nonprincipal characters modulo p to this sum is

$$\ll y^{-1}S_4 \log x \ll x \exp(-c\sqrt{\log x}).$$

By [S2, Lemma 12], the contribution of principal character modulo p to this sum is

$$=\sum_{p\leq x}\sum_{r\mid p-1}\frac{\phi\left(\frac{p-1}{r}\right)}{r(p-1)}+O(\log\log x)+O\left(y^{-1}\frac{x}{\log x}\right)=C\mathrm{Li}(x)+O\left(\frac{x}{\log^{A}x}\right).$$

Thus, (1) follows. The proof of (3) follows by a similar argument if we replace $\sum_{r|p-1} r^{-1}$ by r = 1 and $c_r(\chi)$ by $c_1(\chi)$.

For (2), it is enough to show that

$$y^{-1} \sum_{a \le y} \left(\sum_{p \le x} \frac{\ell_a(p)}{p-1} - \sum_{p \le x} \sum_{r|p-1} \frac{\phi\left(\frac{p-1}{r}\right)}{r(p-1)} \right)^2 = O\left(x^2 \exp(-c_2 \sqrt{\log x})\right).$$

Again, the contribution of $a \leq y$ for which p|a is $O((\log \log x)^2)$. Thus, we consider

$$y^{-1} \sum_{a \le y} \sum_{p \le x} \sum_{q \le x} \frac{\ell_a(p)\ell_a(q)}{(p-1)(q-1)} = y^{-1} \sum_{a \le y} \sum_{\substack{p \le x \ r \mid p-1 \\ q \le x \ s \mid q-1}} r^{-1} s^{-1} \sum_{\chi_1(\text{mod } p)} c_r(\chi_1)\chi_1(a) \sum_{\chi_2(\text{mod } q)} c_s(\chi_2)\chi_2(a)$$
$$= y^{-1} \sum_{\substack{p \le x \ r \mid p-1 \\ q \le x \ s \mid q-1}} r^{-1} s^{-1} \sum_{\chi_1(\text{mod } p)} c_r(\chi_1) \sum_{\chi_2(\text{mod } q)} c_s(\chi_2) \sum_{a \le y} \chi_1\chi_2(a).$$

The contribution of nonprincipal characters modulo p is, by Lemma 3.3,

$$\ll y^{-1} (\log x)^2 S_{10} \ll x^2 \exp(-c\sqrt{\log x})$$

The contribution of principal characters modulo p

$$=\sum_{\substack{p \le x \ r \mid p-1 \\ q \le x \ s \mid q-1}} \sum_{\substack{r \mid p-1 \\ q = 1}} r^{-1} s^{-1} \frac{\phi\left(\frac{p-1}{r}\right)}{p-1} \frac{\phi\left(\frac{q-1}{s}\right)}{q-1} + O((\log\log x)^2) + O\left(y^{-1}\left(\frac{x}{\log x}\right)^2\right)$$

Then by [S2, Lemma 12], (2) follows. The proof of (4) is by a similar argument if we replace $\sum_{r|p-1} r^{-1}$ and $\sum_{s|p-1} s^{-1}$ by r = 1 and s = 1, also $c_r(\chi_1)$ and $c_s(\chi_2)$ by $c_1(\chi_1)$ and $c_1(\chi_2)$ respectively.

5. Proof of Theorem 1.2

Proof of Theorem 1.2. Note that there is some integer n such that a prime p divides $a^n - b$ if and only if $\ell_b(p)|\ell_a(p)$. Thus, we begin with putting $\ell_b(p) = w$, $\ell_a(p) = wt$, and changing the order of summations,

$$y^{-2} \sum_{\substack{a \le y \\ b \le y}} \sum_{\substack{p \le x \\ \ell_b(p) \mid \ell_a(p)}} 1 = y^{-2} \sum_{\substack{a \le y \\ b \le y}} \sum_{\substack{p \le x \\ k \mid p-1 \\ \psi}} \sum_{\substack{\chi_1, \chi_2 \pmod{p}}} c_w(\chi_1) c_{wt}(\chi_2) \chi_1(a) \chi_2(b)$$
$$= y^{-2} \sum_{\substack{p \le x \\ k \mid p-1 \\ \psi}} \sum_{\substack{\chi_1, \chi_2 \pmod{p}}} c_w(\chi_1) c_{wt}(\chi_2) \sum_{a \le y} \chi_1(a) \sum_{b \le y} \chi_2(b).$$

The contribution of all pairs of characters (χ_1, χ_2) for which one of χ_1 or χ_2 is nonprincipal, is

$$\ll y^{-2} \sum_{p \le x} \tau_3(p-1)\tau_2(p-1) \sum_{\chi \pmod{p}}^* \frac{1}{\operatorname{ord}(\chi)} \left| \sum_{a \le y} \chi(a) \right| y.$$

We split this sum into two parts where $\tau_3(p-1)\tau_2(p-1) < \exp(c_3\sqrt{\log x})$ and $\tau_3(p-1)\tau_2(p-1) \ge \exp(c_3\sqrt{\log x})$. We take $c_3 = c_2/2$ where c_2 is the positive constant in Lemma 3.3. Then the first part is $O(x \exp(-c_3\sqrt{\log x}))$ by Lemma 3.3. The second part is $O(x \log^N x \exp(-c_3\sqrt{\log x}))$ for a fixed N > 0, since we have

$$\sum_{p \le x} \tau_3^2(p-1)\tau_2^3(p-1) \ll \sum_{n \le x} \tau_3^2(n)\tau_2^3(n) \ll x \log^{71} x,$$

by Selberg-Delange method [T, Theorem 5, pp. 191]. Thus, we have for some c > 0,

$$y^{-1} \sum_{p \le x} \tau_3(p-1)\tau_2(p-1) \sum_{\chi \pmod{p}}^* \frac{1}{\operatorname{ord}(\chi)} \left| \sum_{a \le y} \chi(a) \right| \ll x \exp(-c\sqrt{\log x}).$$

.

The contribution of all pairs of characters (χ_1, χ_2) for which χ_1 and χ_2 both are principal is by [S2, Lemma 12] and $\sum_{d|n} \phi(d) = n$,

$$= y^{-2} \sum_{\substack{p \le x \ w \mid p-1 \\ t \mid \frac{p-1}{w}}} \frac{\phi\left(\frac{p-1}{w}\right)}{p-1} \frac{\phi\left(\frac{p-1}{wt}\right)}{p-1} \left(y + O\left(\frac{y}{p}\right)\right)^2 = \sum_{\substack{p \le x \ w \mid p-1}} \sum_{\substack{w \mid p-1 \\ w(p-1)}} \frac{\phi\left(\frac{p-1}{w}\right)}{w(p-1)} \left(1 + O\left(\frac{1}{p}\right)\right)^2$$
$$= C \operatorname{Li}(x) + O\left(\frac{x}{\log^A x}\right).$$

This completes the proof of (5).

For the proof of (6), it is enough to show that

$$y^{-2} \sum_{\substack{a \le y \\ b \le y}} \left(\sum_{\substack{p \le x \\ \ell_b(p) | \ell_a(p)}} 1 - \sum_{\substack{p \le x \\ w | p - 1}} \frac{\phi(\frac{p-1}{w})}{w(p-1)} \right)^2 = O\left(x^2 \exp(-c\sqrt{\log x})\right).$$

We write the sum on the left $y^{-2} \sum (\sum_1 - \sum_2)^2$ after expanding the inner square as $y^{-2} \sum (\sum_1^2 + \sum_2^2 - 2\sum_1 \sum_2)$. Then by putting $\ell_b(p) = w$, $\ell_a(p) = wt$, $\ell_b(q) = u$, and $\ell_a(q) = us$ respectively, and by changing the order of the summations in $y^{-2} \sum \sum_{1}^{2}$, we have

$$y^{-2} \sum_{a \le y} \sum_{b \le y} \sum_{\substack{p \le x \\ \ell_b(p) \mid \ell_a(p)}} \sum_{\substack{q \le x \\ \ell_b(q) \mid \ell_a(q)}} 1$$

= $y^{-2} \sum_{p \le x} \sum_{q \le x} \sum_{\substack{w \mid p-1 \\ t \mid \frac{p-1}{w}}} \sum_{\substack{u \mid q-1 \\ \chi_1, \chi_2(\text{mod } p) \\ \eta \mid q = 1}} \sum_{\substack{\chi_1, \chi_2(\text{mod } p) \\ \chi_1, \chi_4(\text{mod } q)}} c_w(\chi_1) c_{wt}(\chi_2) c_u(\chi_3) c_{us}(\chi_4) \sum_{a \le y} \chi_1 \chi_3(a) \sum_{b \le y} \chi_2 \chi_4(b).$

The contribution of the 4-tuple of characters $(\chi_1, \chi_2, \chi_3, \chi_4)$ such that all four characters are principal is precisely $y^{-2} \sum \sum_{2}^{2}$. Similarly expanding the sum $y^{-2} \sum \sum_{1} \sum_{2}$ using the character sums, we see that those contribution of tuples of all four principal characters is cancelled in $y^{-2} \sum (\sum_{1}^{2} + \sum_{2}^{2} - 2 \sum_{1} \sum_{2})$. Thus, we consider the contribution of the 4-tuple of characters $(\chi_1, \chi_2, \chi_3, \chi_4)$ such that at least one of these four characters is nonprincipal. Among these, it is easily seen that the contribution of p = q is $O(x/\log x)$. We assume that $p \neq q$. Then if one of χ_1 or χ_3 is nonprincipal, then $\chi_1\chi_3$ is nonprincipal mod pq. Similarly, if one of χ_2 or χ_4 is nonprincipal, then $\chi_2\chi_4$ is nonprincipal mod pq. Therefore, the contribution is bounded by

$$y^{-2} \sum_{p \le x} \sum_{q \le x} \tau_3(p-1)\tau_3(q-1)\tau_2(p-1)\tau_2(q-1) \sum_{\chi_1 \pmod{p} \chi_2 \pmod{q}} \sum_{(\text{mod } p) \chi_2 \pmod{q}}^* \frac{1}{\operatorname{ord}(\chi_1)\operatorname{ord}(\chi_2)} \left| \sum_{a \le y} \chi_1\chi_2(a) \right| y.$$

We split this sum into two parts where $\tau_3(p-1)\tau_3(q-1)\tau_2(p-1)\tau_2(q-1) < \exp(c_3\sqrt{\log x})$ and $\tau_3(p-1)\tau_3(q-1)\tau_2(p-1)\tau_2(q-1) \ge \exp(c_3\sqrt{\log x})$ with $c_3 = c_2/2$. The first part is $O(x^2 \exp(-c_3\sqrt{\log x}))$ by Lemma 3.3. The second part is $O(x^2 \log^N x \exp(-c_3\sqrt{\log x}))$ since $\sum_{p \le x} \sum_{q \le x} \tau_3^2(p-1)\tau_2^3(p-1)\tau_3^2(q-1)\tau_2^3(q-1) = O(x^2 \log^N x)$ for a fixed N > 0. Thus, we have

$$\begin{aligned} y^{-1} \sum_{p \le x} \sum_{q \le x} \tau_3(p-1) \tau_3(q-1) \tau_2(p-1) \tau_2(q-1) \sum_{\chi_1 \pmod{p}} \sum_{\chi_2 \pmod{q}}^* \frac{1}{\operatorname{ord}(\chi_1) \operatorname{ord}(\chi_2)} \left| \sum_{a \le y} \chi_1 \chi_2(a) \right| \\ \ll x^2 \exp(-c\sqrt{\log x}). \end{aligned}$$

This completes the proof of (6).

6. Average Estimates for $g(\ell_a(p))$

The following results are proven in [EP, Lemma 2.1, 2.2]. The function g is either one of $\Omega(n) = \sum_{p|n} 1$ or $\omega(n) = \sum_{p|n} 1$.

Lemma 6.1 (Erdős-Pomerance).

(17)
$$\sum_{p \le x} g(p-1) = \pi(x) \log \log x + O(\pi(x)),$$

(18)
$$\sum_{p \le x} g(p-1)^2 = \pi(x)(\log \log x)^2 + O(\pi(x)\log \log x).$$

Also by partial summation, the following are proven in [EP, Lemma 2.3, 2.4]. Corollary 6.1 (Erdős-Pomerance).

(19)
$$\sum_{p \le x} \frac{g(p-1)}{p} = \frac{1}{2} (\log \log x)^2 + O(\log \log x),$$

(20)
$$\sum_{p \le x} \frac{g(p-1)^2}{p} = \frac{1}{3} (\log \log x)^3 + O((\log \log x)^2).$$

It is possible to obtain the following results on average by applying Lemma 3.3.

Lemma 6.2. If $y > \exp((\alpha + \epsilon)\sqrt{\log x})$, then

(21)
$$\sum_{p \le x} \frac{1}{y} \sum_{a \le y} g(\ell_a(p)) = \pi(x) \log \log x + O(\pi(x))$$

(22)
$$\sum_{p \le x} \left(\frac{1}{y} \sum_{a \le y} g(\ell_a(p)) \right)^2 = \pi(x) (\log \log x)^2 + O(\pi(x) \log \log x).$$

Here, $g(n) = \omega(n)$ or $\Omega(n)$.

Proof. We first consider $g(n) = \omega(n)$. We write the LHS of (21) as

$$\sum_{p \le x} \frac{1}{y} \sum_{a \le y} \omega(\ell_a(p)) = \frac{1}{y} \sum_{p \le x} \sum_{a \le y} \sum_{s|p-1} \sum_{q|\frac{p-1}{s}} \sum_{\ell_a(p) = \frac{p-1}{s}} 1$$
$$= \frac{1}{y} \sum_{p \le x} \sum_{a \le y} \sum_{s|p-1} \sum_{q|\frac{p-1}{s}} \sum_{\chi(\text{mod } p)} c_s(\chi) \chi(a)$$
$$= \frac{1}{y} \sum_{p \le x} \sum_{s|p-1} \sum_{q|\frac{p-1}{s}} \sum_{\chi(\text{mod } p)} c_s(\chi) \sum_{a \le y} \chi(a).$$

Note that the sum over p and q are over prime numbers. The contribution of non-principal characters to the sum is

1

$$\ll \frac{1}{y} \sum_{p \le x} \tau_3(p-1) \sum_{\chi \pmod{p}}^* \frac{1}{\operatorname{ord}(\chi)} \left| \sum_{a \le y} \chi(a) \right|,$$

where the sum \sum^* denotes the sum over non-principal primitive characters. Splitting the sum into $\tau_3(p-1) \leq \exp\left(\frac{c_2}{2}\sqrt{\log x}\right)$ and $\tau_3(p-1) > \exp\left(\frac{c_2}{2}\sqrt{\log x}\right)$, we obtain that the contribution of non-principal characters is, by Lemma 3.3,

$$\ll x \exp(-c_3 \sqrt{\log x})$$

where c_3 is an absolute positive constant.

For the principal character χ_0 modulo p, the contribution is

$$\begin{split} \sum_{p \le x} \sum_{s|p-1} \sum_{q|\frac{p-1}{s}} \frac{\phi\left(\frac{p-1}{s}\right)}{p-1} \left(1 + O\left(\frac{1}{p}\right)\right) &= \sum_{p \le x} \sum_{s|p-1} \sum_{q|\frac{p-1}{s}} \frac{\phi\left(\frac{p-1}{s}\right)}{p-1} + O\left(\sum_{p \le x} \sum_{s|p-1} \sum_{q|\frac{p-1}{s}} \frac{\phi\left(\frac{p-1}{s}\right)}{p(p-1)}\right) \\ &= \sum_{p \le x} \frac{1}{p-1} \sum_{s|p-1} \phi(s)\omega(s) + O\left(\sum_{p \le x} \frac{1}{p(p-1)} \sum_{s|p-1} \phi(s)\omega(s)\right). \end{split}$$

By the elementary identity and estimate

$$\sum_{s|n} \phi(s)\omega(s) = n \sum_{q^k||n} \left(1 - \frac{1}{q^k}\right) = n\omega(n) + O\left(n \sum_{q|n} \frac{1}{q}\right) = O(n\omega(n)),$$

the contribution of principal character becomes

$$\sum_{p \le x} \omega(p-1) + O(\pi(x)).$$

Then the result (21) for $g(n) = \omega(n)$ follows by Lemma 6.1.

For the proof of (22), we write the LHS of (22) for $g(n) = \omega(n)$ as

. 9

$$\begin{split} \sum_{p \le x} \left(\frac{1}{y} \sum_{a \le y} \omega(\ell_a(p)) \right)^2 &= \frac{1}{y^2} \sum_{p \le x} \sum_{a \le y} \sum_{b \le y} \sum_{b \le y} \omega(\ell_a(p)) \omega(\ell_b(p)) \\ &= \frac{1}{y^2} \sum_{p \le x} \sum_{a \le y} \sum_{b \le y} \sum_{s|p-1} \sum_{q|\frac{p-1}{s}} \sum_{\ell_a(p) = \frac{p-1}{s}} \sum_{\ell_b(p) = \frac{p-1}{t}} 1 \\ &= \frac{1}{y^2} \sum_{p \le x} \sum_{a \le y} \sum_{b \le y} \sum_{s|p-1} \sum_{q|\frac{p-1}{s}} \sum_{q|\frac{p-1}{t}} \left(\sum_{\chi_1(\text{mod } p)} c_s(\chi_1) \chi_1(a) \right) \left(\sum_{\chi_2(\text{mod } p)} c_t(\chi_2) \chi_2(b) \right) \\ &= \frac{1}{y^2} \sum_{p \le x} \sum_{s|p-1} \sum_{q|\frac{p-1}{s}} \sum_{\chi_1(\text{mod } p)} c_s(\chi_1) c_t(\chi_2) \sum_{a \le y} \chi_1(a) \sum_{b \le y} \chi_2(b). \end{split}$$

Here, the indices p, q, and r are primes.

To find the contribution of pairs (χ_1, χ_2) when one of the characters is non-principal, without loss of generality we assume that χ_1 is non-principal. This case contributes to

L

$$\ll \frac{1}{y} \sum_{p \le x} \tau_3(p-1)^2 \tau(p-1) \sum_{\chi_1(\text{mod } p)}^* \frac{1}{\operatorname{ord}(\chi_1)} \left| \sum_{a \le y} \chi_1(a) \right|.$$

Splitting the sum into $\tau_3(p-1)^2 \tau(p-1) \leq \exp\left(\frac{c_2}{2}\sqrt{\log x}\right)$ and $\tau_3(p-1)^2 \tau(p-1) > \exp\left(\frac{c_2}{2}\sqrt{\log x}\right)$, we see that the contribution of this case is, by Lemma 3.3,

$$\ll x \exp(-c_4 \sqrt{\log x}),$$

where c_4 is an absolute positive constant.

The contribution of the case in which both characters χ_1 and χ_2 are principal is treated as

$$\begin{split} \sum_{p \le x} \sum_{\substack{s \mid p-1 \\ t \mid p-1 \\ r \mid \frac{p-1}{t}}} \sum_{\substack{p < 1 \\ p-1 \\ r \mid \frac{p-1}{t}}} \frac{\phi\left(\frac{p-1}{t}\right)}{p-1} \frac{\phi\left(\frac{p-1}{t}\right)}{p-1} \left(1+O\left(\frac{1}{p}\right)\right)^2 &= \sum_{p \le x} \sum_{\substack{s \mid p-1 \\ t \mid p-1 \\ r \mid \frac{p-1}{t}}} \sum_{\substack{p < x}} \frac{\phi\left(\frac{p-1}{s}\right)}{p-1} \frac{\phi\left(\frac{p-1}{t}\right)}{p-1} \left(1+O\left(\frac{1}{p}\right)\right)^2 \\ &= \sum_{p \le x} \frac{1}{(p-1)^2} \sum_{\substack{s \mid p-1 \\ t \mid p-1}} \phi(s)\omega(s)\phi(t)\omega(t) \left(1+O\left(\frac{1}{p}\right)\right)^2 \\ &= \sum_{p \le x} \frac{1}{(p-1)^2} \left(\sum_{\substack{s \mid p-1 \\ s \mid p-1}} \phi(s)\omega(s)\right)^2 \left(1+O\left(\frac{1}{p}\right)\right)^2 \\ &= \sum_{p \le x} \left(\omega(p-1)+O\left(\sum_{\substack{q \mid p-1 \\ q \mid p-1}} \frac{1}{q}\right)\right)^2 \left(1+O\left(\frac{1}{p}\right)\right). \end{split}$$

By the Cauchy-Schwarz inequality and (18), the last expression is,

$$= \sum_{p \le x} \omega(p-1)^2 + O(\pi(x) \log \log x)$$
$$= \pi(x) (\log \log x)^2 + O(\pi(x) \log \log x).$$

Therefore, we have (22) for $g(n) = \omega(n)$. For $g(n) = \Omega(n)$, we may use the estimates for $g(n) = \Omega(n)$ in Lemma 6.1. Then the proofs of (21) and (22) are complete. Also, by partial summation, the following estimates are immediate.

Corollary 6.2. If $y > \exp((\alpha + \epsilon)\sqrt{\log x})$, then

(23)
$$\mathfrak{A}(x) := \sum_{p \le x} \frac{\frac{1}{y} \sum_{a \le y} g(\ell_a(p))}{p} = \frac{1}{2} (\log \log x)^2 + O(\log \log x),$$

(24)
$$\mathfrak{B}(x)^2 := \sum_{p \le x} \frac{\left(\frac{1}{y} \sum_{a \le y} g(\ell_a(p))\right)^2}{p} = \frac{1}{3} (\log \log x)^3 + O((\log \log x)^2).$$

Here, $g(n) = \omega(n)$ or $\Omega(n)$.

7. Kubilius-Shapiro Theorem and Proof of Theorem 1.3

We say that an arithmetic function f(n) is strongly additive if f(mn) = f(m) + f(n) for any (m, n) = 1, and $f(p^a) = f(p)$ for any $a \ge 1$. The following result by Kubilius and Shapiro will be essential in this paper (see [E, Theorem 12.2]).

Lemma 7.1 (Kubilius-Shapiro). Let f(n) be a strongly additive function. Let

$$A(x) := \sum_{p \le x} \frac{f(p)}{p}, \quad B(x)^2 := \sum_{p \le x} \frac{f(p)^2}{p}.$$

Suppose that for any $\epsilon > 0$,

$$\lim_{x \to \infty} \frac{1}{B(x)^2} \sum_{\substack{p \le x \\ |f(p)| > \epsilon B(x)}} \frac{f(p)^2}{p} = 0.$$

Then for any fixed real number u,

$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n \le x : \frac{f(n) - A(x)}{B(x)} \le u \right\} = G(u).$$

We define a strongly additive arithmetic function by

$$F(n) := \frac{1}{y} \sum_{a \le y} \sum_{p|n} \Omega(\ell_a(p)).$$

. 9

As treated in [MS, (38)] and [EP, p. 348], we have for any $\epsilon > 0$,

$$\sum_{\substack{p \le x \\ |F(p)| > \epsilon \mathfrak{B}(x)}} \frac{F(p)^2}{p} = \sum_{\substack{p \le x \\ |F(p)| > \epsilon \mathfrak{B}(x)}} \frac{\left(\frac{1}{y} \sum_{a \le y} \Omega(\ell_a(p))\right)^2}{p}$$
$$\leq \sum_{\substack{p \le x \\ |\Omega(p-1)| > \epsilon \mathfrak{B}(x)}} \frac{\Omega(p-1)^2}{p} = o(\mathfrak{B}(x)^2).$$

Therefore, by Kubilius-Shapiro theorem, we have

$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n \le x : \frac{F(n) - \frac{1}{2} (\log \log x)^2}{\frac{1}{\sqrt{3}} (\log \log x)^{\frac{3}{2}}} \le u \right\} = G(u).$$

In order to prove Theorem 1.3, we need to show that the four functions

$$F(n), \quad G(n) := \frac{1}{y} \sum_{a \le y} \sum_{p|n} \omega(\ell_a(p)), \quad \frac{1}{y} \sum_{a \le y} \Omega(\ell_a(n)), \quad \text{and} \quad \frac{1}{y} \sum_{a \le y} \omega(\ell_a(n))$$

are not very much different. We prove inequalities between the four functions without averaging and uniform in a.

Lemma 7.2. For any $a \ge 1$, we have

$$\sum_{p|n} \omega(\ell_a(p)) + O(\omega(n)) + O(\Omega(\phi(n)) - \omega(\phi(n))) \le \omega(\ell_a(n))$$
$$\le \Omega(\ell_a(n)) \le \sum_{p|n} \Omega(\ell_a(p)) + O(\Omega(n) - \omega(n))$$

Proof. The inequality in the middle is clear. The last inequality is by

$$\ell_a(n) = \underset{p^k \mid \mid n}{\operatorname{LCM}} \ \ell_a(p^k)$$

which implies

$$\ell_a(n) | \prod_{p^k || n} \ell_a(p^k).$$

Note that $\ell_a(p^k) \leq \ell_a(p) + k - 1$ for any a and p. If $(a, p) \neq 1$, then $\ell_a(p^k) = \ell_a(p) = \ell_a(1) = 1$ due to the extended definition of $\ell_a(p)$. If (a, p) = 1, then $a^{\ell_a(p)} \equiv 1 \pmod{p}$. This gives $a^{p^{k-1}\ell_a(p)} \equiv 1 \pmod{p}$. It follows that $\ell_a(p^k)|p^{k-1}\ell_a(p)$. Thus, the claim follows. Then

$$\Omega(\ell_a(n)) \le \sum_{p^k \mid |n} \Omega(\ell_a(p^k)) \le \sum_{p^k \mid |n} \left(\Omega(\ell_a(p)) + k - 1 \right) = \sum_{p \mid n} \Omega(\ell_a(p)) + \Omega(n) - \omega(n)$$

Thus, the third inequality follows.

For the first inequality, we use the following again

$$\ell_a(n) = \underset{p^k \mid \mid n}{\operatorname{LCM}} \ \ell_a(p^k).$$

This shows that

$$\omega(\ell_a(n)) = \omega(\ell_a(\operatorname{rad}(n))) + O(\omega(n)) = \omega(\operatorname{LCM}_{p|n} \ \ell_a(p)) + O(\omega(n)).$$

Note that by $\ell_a(p)|p-1$, we have

$$\sum_{p|n} \omega(\ell_a(p)) - \omega(\underset{p|n}{\operatorname{LCM}} \ell_a(p)) = \sum_{\substack{q|\text{LCM} \ \ell_a(p) \\ q|\ell_a(p) \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \text{ for } k \ge 2 \text{ primes } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ p-1 \\ q|p-1 \ q \ge 2 \text{ for } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ q \ge 2 \text{ for } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ q \ge 2 \text{ for } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ q \ge 2 \text{ for } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ q \ge 2 \text{ for } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ q \ge 2 \text{ for } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ q \ge 2 \text{ for } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ q \ge 2 \text{ for } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ q \ge 2 \text{ for } p|n}} (k-1) \le \sum_{\substack{q|\text{LCM} \ q \ge 2 \text{ for } p|n}} (k-1) \le \sum_{\substack{q|\text{$$

That is,

$$0 \leq \sum_{p|n} \omega(\ell_a(p)) - \omega(\underset{p|n}{\operatorname{LCM}} \ \ell_a(p)) \leq \sum_{p|n} \omega(p-1) - \omega(\lambda(\operatorname{rad}(n))) \leq \Omega(\phi(n)) - \omega(\phi(n)) + O(\omega(n)).$$

Here, $\lambda(n)$ is the Carmichael's lambda function and rad(n) is the largest square-free divisor of n. Thus,

$$\omega(\ell_a(n)) - \sum_{p|n} \omega(\ell_a(p)) = O(\Omega(\phi(n)) - \omega(\phi(n))) + O(\omega(n)).$$

This proves the first inequality.

Lemma 7.3. We have

$$\sum_{p|n} (\Omega(\ell_a(p)) - \omega(\ell_a(p))) = O(\Omega(\phi(n)) - \omega(\phi(n))) + O(\omega(n)).$$

Proof. Note that

$$0 \leq \sum_{p|n} (\Omega(\ell_a(p)) - \omega(\ell_a(p))) = \sum_{p|n} \sum_{\substack{q^k \mid |\ell_a(p) \\ k \geq 2}} (k-1) \leq \sum_{p|n} \sum_{\substack{q^\ell \mid |p-1 \\ \ell \geq 2}} (\ell-1) = \sum_{p|n} (\Omega(p-1) - \omega(p-1)).$$

We have

 $\sum_{p|n} \Omega(p-1) \leq \Omega(\phi(n))$

and

$$\sum_{p|n} \omega(p-1) \ge \omega(\lambda(\operatorname{rad}(n))) = \omega(\phi(n)) + O(\omega(n)).$$

Thus,

$$\sum_{p|n} (\Omega(p-1) - \omega(p-1)) = O(\Omega(\phi(n)) - \omega(\phi(n))) + O(\omega(n)).$$

As a consequence, the differences between any two members of the set

$$\left\{\Omega(\ell_a(n)), \omega(\ell_a(n)), \sum_{p|n} \Omega(\ell_a(p)), \sum_{p|n} \omega(\ell_a(p))\right\}$$

are, uniformly for a,

$$O(\Omega(\phi(n)) - \omega(\phi(n))) + O(\Omega(n)).$$

Now, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. Applying the average over $a \leq y$, the differences between any two members of the set

$$\left\{\frac{1}{y}\sum_{a\leq y}\Omega(\ell_a(n)), \frac{1}{y}\sum_{a\leq y}\omega(\ell_a(n)), \frac{1}{y}\sum_{a\leq y}\sum_{p\mid n}\Omega(\ell_a(p)), \frac{1}{y}\sum_{a\leq y}\sum_{p\mid n}\omega(\ell_a(p))\right\}$$

are also

$$O(\Omega(\phi(n)) - \omega(\phi(n))) + O(\Omega(n)))$$

By the Hardy-Ramanujan theorem [MV, Corollary 2.13], it is well-known that $\Omega(n) = O(\log \log x)$ for all but o(x) integers $n \leq x$. By [EP, (3.5)], we have $\Omega(\phi(n)) - \omega(\phi(n)) = O((\log \log x)(\log \log \log \log x))$ for all but o(x) integers $n \leq x$. Thus, except possibly for o(x) integers $n \leq x$, we have

$$O(\Omega(\phi(n)) - \omega(\phi(n))) + O(\Omega(n)) = O((\log \log x)(\log \log \log \log x)) = O((\log \log x)^{\frac{d}{2}})$$

Therefore, we also have (7) for the functions

$$\frac{1}{y}\sum_{a\leq y}\Omega(\ell_a(n)), \text{ and } \frac{1}{y}\sum_{a\leq y}\omega(\ell_a(n)).$$

This completes the proof of Theorem 1.3.

8. Proof of Theorem 1.4

We prove that $\phi(n)\tau(n)/n$ can be written as a Dirichlet convolution identity. This identity is used in proving a result (see Lemma 8.5) similar to the Titchmarsh Divisor Problem.

Lemma 8.1. We have

(25)
$$\frac{\phi(n)}{n}\tau(n) = \sum_{d|n}\tau(d)f\left(\frac{n}{d}\right),$$

where

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_p \left(1 - \frac{2}{p^{s+1}} + \frac{1}{p^{2s+1}} \right)$$

is absolutely convergent on $\Re(s) > 0$.

Proof. We begin with

$$\sum_{n=1}^{\infty} \frac{\frac{\phi(n)}{n}\tau(n)}{n^s} = \sum_{n=1}^{\infty} \frac{\tau(n)}{n^s} \sum_{n=1}^{\infty} \frac{f(n)}{n^s}.$$

Then we have

$$\sum_{n=1}^{\infty} \frac{f(n)}{n^s} = \prod_p \left(1 + \frac{\left(1 - \frac{1}{p}\right)2}{p^s} + \frac{\left(1 - \frac{1}{p}\right)3}{p^{2s}} + \cdots \right) \left(1 - \frac{1}{p^s}\right)^2$$
$$= \prod_p \left(1 - \frac{1}{p} \left(\frac{2}{p^s} - \frac{1}{p^{2s}}\right) \right) = \prod_p \left(1 - \frac{2}{p^{s+1}} + \frac{1}{p^{2s+1}} \right)$$

This Dirichlet series is absolutely convergent on $\Re(s) > 0$.

The numbers $C_1(a, r)$ and $C_2(a, r)$ are defined in [F] as

$$C_1(a,r) := \frac{\zeta(2)\zeta(3)}{\zeta(6)} \prod_{p|a} \left(1 - \frac{p}{p^2 - p + 1} \right) \prod_{p|r} \left(1 + \frac{p - 1}{p^2 - p + 1} \right),$$
$$C_2(a,r) := C_1(a,r) \left(\gamma - \sum_p \frac{\log p}{p^2 - p + 1} + \sum_{p|a} \frac{p^2 \log p}{(p - 1)(p^2 - p + 1)} - \sum_{p|r} \frac{(p - 1)p \log p}{p^2 - p + 1} \right).$$

Here, γ is the Euler's constant. We write $C_1 := C_1(1,1)$. Denote by q' the largest positive square-free divisor of q. The following is Theorem 2.4 in [F].

Lemma 8.2 (Titchmarsh Divisor Problem-Fiorilli). Let $1 \le q \le x^{\lambda}$ with $\lambda < 1/10$. Then we have for any A > 0,

(26)
$$\sum_{\substack{p \le x \\ p \equiv 1(q)}} \tau\left(\frac{p-1}{q}\right) \log p = \frac{x}{q} \left[C_1(1,q) \log x + 2C_2(1,q) + C_1(1,q) \log \frac{(q')^2}{eq} \right] + E_q(x) + O\left(\frac{x^{\frac{1}{2}+\epsilon}}{q}\right),$$

where

$$\sum_{q < x^{\lambda}} |E_q(x)| = O\left(\frac{x}{\log^A x}\right).$$

Applying this lemma, we prove the following that will play a central role in estimating error terms.

Lemma 8.3. Under the same assumptions as in Lemma 8.2, the term $E_q(x)$ also satisfies

(27)
$$\sum_{q < x^{\lambda}} \tau(q) |E_q(x)| = O\left(\frac{x}{\log^A x}\right).$$

Proof. Note that there is a fixed N > 0 such that $|E_q(x)| \leq \frac{x \log^N x}{q}$ and $\sum_{q \leq x} \frac{\tau^2(q)}{q} \leq \log^N x$. We split the sum into two parts: $\tau(q) < \log^{A+2N} x$ and $\tau(q) \geq \log^{A+2N} x$. The first part is treated by replacing A by 2A + 2N in Lemma 8.2. The second part is bounded by

$$\sum_{q < x^{\lambda}} \frac{\tau^2(q)}{\log^{A+2N} x} |E_q(x)| \le \sum_{q < x^{\lambda}} \frac{x\tau^2(q)}{q \log^{A+N} x} \le \frac{x}{\log^A x}.$$

In the following lemma, we consider two convergent expressions K_1 and K_2 in double sums.

Lemma 8.4. The following double sums over positive integers u, d converge absolutely:

(28)
$$K_1 = \sum_{u,d} \frac{f(u)}{d^2 u} C_1(1, ud),$$

(29)
$$K_2 = \sum_{u,d} \frac{f(u)}{d^2 u} \left(2C_2(1, ud) + C_1(1, ud) \log \frac{((ud)')^2}{eud} \right).$$

Moreover, K_1 can be written as an Euler product,

$$K_1 = \prod_p \left(1 + \frac{1}{p^3 - p} \right).$$

Proof. From the definitions of $C_1(a,q)$ and $C_2(a,q)$ in [F, Section 3], we see that there is a fixed N > 0 such that $|C_1(1,q)| + |C_2(1,q)| = O(\log^N q)$. Thus, the double sums K_1 and K_2 converge absolutely. Let $C_1 = \frac{\zeta(2)\zeta(3)}{\zeta(6)}$. Also, if we write K_1 as Euler product, we have

$$K_{1} = \sum_{d,u} \frac{f(u)C_{1}(1,du)}{d^{2}u} = \sum_{q} C_{1}(1,q) \sum_{du=q} \frac{f(u)}{d^{2}u}$$
$$= C_{1} \prod_{p} \left[1 + \left(1 + \frac{p-1}{p^{2}-p+1} \right) \left[\left(1 - \frac{2}{p^{2}} + \frac{1}{p^{3}} \right) \left(1 - \frac{1}{p^{2}} \right)^{-1} - 1 \right] \right]$$
$$= \prod_{p} \frac{p^{3}-p+1}{p^{3}-p} = \prod_{p} \left(1 + \frac{1}{p^{3}-p} \right).$$

The following mean value theorem will be useful toward the proof of Theorem 1.4.

Lemma 8.5. There are constants K_i 's such that for any A > 0,

(30)
$$\sum_{p \le x} \frac{\log p}{p-1} \sum_{d|p-1} \tau(d)\phi(d) = K_1 x \log x + K_2 x + O\left(\frac{x}{\log^A x}\right).$$

The constant K_1 has an expression

$$K_1 = \prod_p \left(1 + \frac{1}{p^3 - p}\right) \approx 1.231291.$$

Assuming the result of Lemma 8.5, the following corollary is proved by applying partial summation. Corollary 8.1. Let K_1 , K_2 be the constants in Lemma 8.1. Then we have for any A > 0,

(31)
$$\sum_{p \le x} \frac{1}{p-1} \sum_{d|p-1} \tau(d)\phi(d) = K_1 x + (K_1 + K_2) \operatorname{Li}(x) + O\left(\frac{x}{\log^A x}\right).$$

Proof of Lemma 8.5. Interchanging the order of the sums, we have

$$\sum_{p \le x} \frac{\log p}{p-1} \sum_{d \mid p-1} \tau(d) \phi(d) = \sum_{p \le x} \frac{\log p}{p-1} \sum_{d \mid p-1} \tau\left(\frac{p-1}{d}\right) \phi\left(\frac{p-1}{d}\right)$$
$$= \sum_{d \le x-1} \sum_{\substack{p \le x \\ p \equiv 1(d)}} \frac{\log p}{p-1} \tau\left(\frac{p-1}{d}\right) \phi\left(\frac{p-1}{d}\right)$$
$$= \sum_{d \le x-1} \frac{1}{d} \sum_{\substack{p \le x \\ p \equiv 1(d)}} \frac{\phi\left(\frac{p-1}{d}\right)}{\frac{p-1}{d}} \tau\left(\frac{p-1}{d}\right) \log p.$$

By Lemma 8.1, the sum is

$$= \sum_{d \le x-1} \frac{1}{d} \sum_{u \le \frac{x-1}{d}} f(u) \sum_{\substack{p \le x \\ p \equiv 1(ud)}} \tau\left(\frac{p-1}{ud}\right) \log p.$$

By $\tau\left(\frac{p-1}{ud}\right)\log p \ll x^{\epsilon}$ and $du \leq x-1$, we have

$$\sum_{\substack{p \le x \\ p \equiv 1 \pmod{ud}}} \tau\left(\frac{p-1}{ud}\right) \log p \ll \frac{x^{1+\epsilon}}{ud}.$$

Thus,

$$\sum_{\substack{\max(u,d) \ge x^{1/22} \\ p \equiv 1(ud)}} \frac{|f(u)|}{d} \sum_{\substack{p \le x \\ p \equiv 1(ud)}} \tau\left(\frac{p-1}{ud}\right) \log p \ll \sum_{\substack{\max(u,d) \ge x^{1/22} \\ \max(u,d) \ge x^{1/22}}} \frac{|f(u)|x^{1+\epsilon}}{d^2u} \ll x^{21/22+\epsilon}.$$

We may truncate the sums over d and u. Then we apply Lemma 8.2 to treat the inner sum over p.

$$= \sum_{d < x^{1/22}} \sum_{u < x^{1/22}} \frac{f(u)}{d} \sum_{\substack{p \le x \\ p \equiv 1(ud)}} \tau\left(\frac{p-1}{ud}\right) \log p + O(x^{21/22+\epsilon})$$

$$= \sum_{\substack{d < x^{1/22} \\ u < x^{1/22}}} \frac{f(u)}{d} \frac{x}{ud} \left[C_1(1, ud) \log x + 2C_2(1, ud) + C_1(1, ud) \log \frac{((ud)')^2}{eud} \right]$$

$$+ \sum_{\substack{d < x^{1/22} \\ u < x^{1/22}}} \frac{f(u)}{d} E_{ud}(x) + O\left(\sum_{\substack{d < x^{1/22} \\ u < x^{1/22}}} \frac{x^{\frac{1}{2}+\epsilon}}{ud}\right) + O(x^{21/22+\epsilon}).$$

By Lemma 8.3 and 8.4, we have

$$= x \log x \sum_{d,u} \frac{f(u)}{d^2 u} C_1(1, ud) + x \sum_{d,u} \frac{f(u)}{d^2 u} \left(2C_2(1, ud) + C_1(1, ud) \log \frac{((ud)')^2}{eud} \right) + O\left(\frac{x}{\log^A x}\right) + O(x^{21/22 + \epsilon}) = K_1 x \log x + K_2 x + O\left(\frac{x}{\log^A x}\right).$$

A similar application of the above method yields an asymptotic formula of an independent interest. For any A > 1 and an absolute constant K_4 , we have

$$\sum_{p \le x} \frac{\tau(p-1)\phi(p-1)}{p-1} = \frac{6}{\pi^2} x + K_4 \text{Li}(x) + O\left(\frac{x}{\log^A x}\right).$$

Now, we are ready to prove Theorem 1.4.

Proof of Theorem 1.4. The contribution of $a \leq y$ for which p|a and $p \leq x$ is

$$\ll \frac{1}{y} \sum_{p \le x} 1 \cdot \left(1 + \frac{y}{p}\right) \ll \frac{x}{y \log x} + \log \log x.$$

Then

$$y^{-1} \sum_{a \le y} \sum_{\substack{p \le x \\ (a,p)=1}} \tau(\ell_a(p)) = y^{-1} \sum_{a \le y} \sum_{\substack{p \le x \\ (a,p)=1}} \sum_{d \mid \ell_a(p)} 1$$
$$= y^{-1} \sum_{a \le y} \sum_{p \le x} \sum_{w \mid p-1} \sum_{d \mid \frac{p-1}{w}} \sum_{\ell_a(p) = \frac{p-1}{w}} 1$$
$$= y^{-1} \sum_{p \le x} \sum_{\substack{w \mid p-1 \\ d \mid \frac{p-1}{w}}} \sum_{\chi(\text{mod } p)} c_w(\chi) \sum_{a \le y} \chi(a).$$

The contribution of the principal characters modulo p is

$$\sum_{p \le x} \sum_{w|p-1} \frac{\phi\left(\frac{p-1}{w}\right)\tau\left(\frac{p-1}{w}\right)}{p-1} = \sum_{p \le x} \frac{\sum_{d|p-1} \phi(d)\tau(d)}{p-1},$$

which is $K_1 x + (K_1 + K_2) \text{Li}(x) + O(x \log^{-B} x)$ by Corollary 8.1.

The contribution of non-principal characters to the sum is

$$\ll \frac{1}{y} \sum_{p \le x} \tau_3(p-1) \sum_{\chi \pmod{p}}^* \frac{1}{\operatorname{ord}(\chi)} \left| \sum_{a \le y} \chi(a) \right|$$

which is $\ll x \exp(-c\sqrt{\log x})$ as we have seen in the proof of Lemma 6.2. Then the proof of Theorem 1.4 is complete.

9. Further Developments

The method in this paper applies to several other results relying on Stephens' method. The result of Theorem 1.1 can be stated as a special case of [AF2, Theorem 1.4]. If we replace [AF2, Lemma 3.2] by Lemma 3.1-3.3, the result of [AF2, Theorem 1.4] holds true for $y > \exp((\alpha + \epsilon)\sqrt{\log x})$. If we replace [AF, Lemma 2.5] by Lemma 3.1-3.3, we may be able to determine a lower bound of c_1 in the results of [AF]. Moreover, the results of [PM] rely on [S1]. Thus, we may replace corresponding lemmas in [PM] to obtain an improved result. Another set of problems we can consider is on the multiplicative order of a modulo n, and primitive roots in $(\mathbb{Z}/n\mathbb{Z})^*$. These are studied in [L], [LP], and they rely on [S1]. The corresponding improvements of the results by using the idea of Lemma 3.1-3.3 will be carried on in an upcoming paper.

References

- [AF] A. Akbary, A. T. Felix On invariants of elliptic curves on average, Acta Arithmetica, 168.1, (2015), pp. 31-70.
- [AF2] A. Akbary, A. T. Felix, On the average value of a function of the residual index, Springer Proceedings in Mathematics & Statistics, Volume 251(2018), pp. 19-37.
- [B] O. Bordellės, Explicit Upper Bounds for the Average Order of $d_n(m)$ and Application to Class Number, Journal of Inequalities in Pure and Applied Mathematics, Volume 3, Issue 3, Article 38, 2002, pp. 1-35.
- [Br] N. G. de Bruijn, The Asymptotic Behavior of a Function Occuring in the Theory of Primes, Journal of Indian Mathematical Society, New Series, 15(1951), pp. 25-32.
- [C] R. D. Carmichael, The Theory of Numbers, Wiley (New York, 1914).
- [BFI] E. Bombieri, J. Friedlander, H. Iwaniec, Primes in Arithmetic Progressions to Large Moduli, Acta Mathematica 156(1986), pp. 203-251.
- [E] P. D. T. A. Elliott, Probabilistic Number Theory II: Central Limit Theorems, Springer 1980.
- [EK] P. Erdős, M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions, Amer. J. Math. 62(1940), pp. 738-742.
- [EP] P. Erdős, C. Pomerance, On the Normal Order of Prime Factors of $\phi(n)$, Rocky Mountain Journal of Mathematics, Volume 15, Number 2, Spring 1985, pp. 343-352.
- [F] D. Fiorilli, On a Theorem of Bombieri, Friedlander and Iwaniec, Canadian J. Math 64(2012), pp. 1019-1035.
- [H] H. Halberstam, On the distribution of additive number-theoretic functions (I, II, III), J. London Math. Soc. 30(1955), pp. 43-53; 31(1956), pp. 1-14; 31(1956), pp. 15-27.
- [Ho] C. Hooley, On Artin's Conjecture, Journal für die Reine und Angewandte Mathematik, Volume 225, (1967) pp. 209-220.

KIM, SUNGJIN

- [HT] A. Hildebrand, G. Tenenbaum, Integers without Large Prime Factors, Journal de Théorie des Nombres de Bordeaux, tome 5, no. 2 (1993), pp. 411-484.
- [K1] S. Kim, The Average Number of Divisors of the Euler Function, Ramanujan Journal, May 2017, pp. 1-29.
- [K2] S. Kim, Average Results on the Order of a mod p, Journal of Number Theory, Dec. 2016, pp. 353-368.
- [L] S. Li, An Improvement of Artin's Conjecture on Average for Composite Moduli, Mathematika 51 (2004), pp. 97-109.
- [LP] S. Li, C. Pomerance, The Artin-Carmichael Primitive Root Problem on Average, Mathematika 55(2009), pp. 13-28.
- [LP2] F. Luca, C. Pomerance, On the Average Number of Divisors of Euler Function, Publ. Math. Debrecen, 70/1-2 (2007), pp. 125-148.
- [PM] C. Pehlivan, L. Menici, Average r-rank Artin Conjecture, Acta Arithmetica 174 (2016), pp. 255-276.
- [MS] M. R. Murty, F. Saidak, Non-Abelian Generalizations of the Erdős-Kac Theorem, Canad. J. Math. Vol. 56(2), 2004, pp. 356-372.
- [MV] H. Montgomery, R. Vaughan, Multiplicative Number Theory I, Classical Theory, Cambridge University Press 2006.
- [S1] P. J. Stephens, An Average Result for Artin's Conjecture, Mathematika, Volume 16, Issue 2, December 1969, pp. 178-188.
- [S2] P. J. Stephens, Prime Divisors of Second Order Linear Recurrences II, Journal of Number Theory, Volume 8, Issue 3, August 1976, pp. 333-345.
- [T] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Cambridge University Press 1995.