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Abstract

We study the distribution of the least common multiple of positive integers
in N∩ [1, x] and related problems. We refine some results of Hilberdink and Tóth
(2016). We also give a partial result toward a conjecture of Hilberdink, Luca,
and Tóth (2020).

1 Introduction

Let N = {1, 2, 3, . . .} be the set of positive integers and P = {2, 3, 5, . . .} be the set of
prime numbers. Let (n1, . . . , nk) = gcd(n1, . . . , nk) and [n1, . . . , nk] = lcm(n1, . . . , nk)
be the greatest common divisor (gcd) and the least common multiple (lcm) of k-tuple
of positive integers n1, . . . , nk respectively. A well known result is that the probability
of (n1, n2) = 1 for randomly chosen positive integers n1 ≤ x and n2 ≤ x tends to
1/ζ(2) = 6/π2 as x tends to ∞. This can be made more precise by providing an
asymptotic formula with an error term. Further, it is possible to write the probability
distribution of the gcd of k-tuples of positive integers for k ≥ 2. This is studied in [FF1,

Theorem A’]. For any integer x ≥ 2, let (X
(x)
i ) be sequence of independent discrete

uniform distribution (iid) on the set {1, . . . , x}. For 1 ≤ m ≤ x and k ≥ 3,

P(gcd(X
(x)
1 , . . . , X

(x)
k ) = m) =

1

mkζ(k)
+O

(
1

xmk−1

)
.

We are interested in achieving a similar result for the distribution of the lcm of
tuples. This also has been extensively studied in the literature. P. Diaconis and P.
Erdős [DE, Theorem 1] provided a distribution function with an error term in the case
k = 2. For any 0 ≤ t ≤ 1,

P(lcm(X
(x)
1 , X

(x)
2 ) ≤ tx2) = 1− 1

ζ(2)

b1/tc∑
j=1

1− jt(1− log(jt))

j2
+Ot

(
log x

x

)
.

For k ≥ 3, the distributions of lcm are more intricate. The case k = 3 is handled
by J. Fernández, P. Fernández [FF1, Theorem 3]. For 0 ≤ t ≤ 1,

lim
x→∞

P(lcm(X
(x)
1 , X

(x)
2 , X

(x)
3 ) ≤ tx3) = 1− T3

∞∑
j=1

1

j3

∞∑
m=1

Υ3(m)3ω(m)

m2
(1− Ω3(tj

2m)),

where T3 =
∏

p

(
1− 1

p

)2 (
1 + 2

p

)
is the probability that three random positive integers

are pairwise coprime, Υ3(m) =
∏

p|m
1+1/p
1+2/p

, ω(m) is the number of distinct prime
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divisors of m, and Ωk(s), 0 < s ≤ 1 is the volume of {(x1, . . . , xk) ∈ [0, 1]k : x1 · · ·xk ≤
s}. Note that this result does not provide an error term in the asymptotic formula.

For k > 3, J. Fernández, P. Fernández [FF1, Theorem 1] proved that

P(lcm(X
(x)
1 , . . . , X

(x)
k ) > txk) �

∞∑
j=1

1− Ωk(tj
k−1)

jk

T. Hilberdink, L. Tóth [HT, Corollary 1] computed the moments of the distributions
of lcm. Let k ≥ 3 and r > −1. Then for every ε > 0,

E

(
[X

(x)
1 , . . . , X

(x)
k ]r

xkr

)
=

1

xk

∑
n1,...,nk≤x

[n1, . . . , nk]
r

xkr
=

Cr,k
(r + 1)k

+O
(
x−

1
2
min(r+1,1)+ε

)
.

This result combined with the method of moments [D, Lemma 3], prove that there

is a limiting distribution of
[X

(x)
1 ,...,X

(x)
k ]

xk
as x → ∞. However, an expression of the

limiting distribution using the method of moments is quite complicated and it conveys
no arithmetical information.

A. Bostan, A. Marynych, K. Raschel [BMR, Theorem 2.3] used the probabilistic
method to find the limiting distribution of lcm. They proved that for k ≥ 2,

[X
(x)
1 , . . . , X

(x)
k ]

xk

converges in distribution to

k∏
j=1

Uj
∏
p∈P

p
max
j≤k
Gj(p)−

∑
j≤k
Gj(p)

where (Uj) is a sequence uniform distribution on (0, 1) and for each prime p, (Gj(p)) is
a sequence of random variables such that Gj(p) is has a geometric distribution with

Gj(p) = m with probability

(
1− 1

p

)
1

pm
for m ≥ 0.

All distributions here are independent.
We write

Rk :=
∏
p∈P

p
max
j≤k
Gj(p)−

∑
j≤k
Gj(p)
∈ 1/N.

Then we must have for any 0 < t ≤ 1,

P

(
[X

(x)
1 , . . . , X

(x)
k ]

xk
> t

)
→
∑
n≤ 1

t

∫ 1

nt

(− log x)k−1

(k − 1)!
dx P

(
Rk =

1

n

)
as x→∞. (1)

To see this, we have for each n ∈ N,
∫ 1

nt
(− log x)k−1/(k − 1)! dx is the conditional

probability that Rk

∏
j≤k Uj > t given that Rk = 1/n. Note that the integral is

1 − Ωk(nt) in the notation of J. Fernández and P. Fernández [FF1]. This conditional
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probability is 0 if n > 1/t. This is the reason that the sum ranges up to n ≤ 1/t. A
detailed account of the probability of Rk = 1/n will be described in section 3. We write
pk(n) = P(Rk = 1/n). Note that p2(n) = 1/(n2ζ(2)). We remark that this expression
in (1) agrees with r = 3 result of [FF1]. To see this, we have for any positive integer n,

p3(n) = T3
∑
j2m=n

Υ3(m)3ω(m)

j3m2
.

This paper brings improvements to the current literature in the following aspects.

1. Providing an error term to (1) in accordance with [DE, Theorem 1].

2. Improving the error terms of the moments of
[X

(x)
1 ,...,X

(x)
k ]

xk
and

[X
(x)
1 ,...,X

(x)
k ]

X
(x)
1 ···X

(x)
k

from [HT,

Corollary 1].
3. Improving [HLT, Theorem 4.1] and thereby giving a partial result toward [HLT,

Remark 4.2].

All three improvements are based on the probability that k positive integers n1, . . . , nk
are pairwise relatively prime (for any i 6= j, (ni, nj) = 1). L. Tóth [To] proved that
such probability tends to

Tk =
∏
p∈P

(
1− 1

p

)k−1(
1 +

k − 1

p

)
.

An error term of O(xk−1 logk−1 x) is provided in his asymptotic formula for the counting
function of such k tuples. His result was successively extended by J. Hu in [H1] and [H2].
See also [RH] for an improved error term O(xk−1 logd x) where d is the maximum degree
of the vertices of a given graph G. However, this improvement does not affect the error
terms of our problems. We apply a modified version of [H2, Theorem 1] which counts
the number of k-tuples of pairwise coprime positive integers up to x such that the i-th
component is coprime to ui. See section 2 for details.

On the first aspect, we provide an error term to (1) in accordance with [DE, The-
orem 1]. The following theorem gives a quantitative description of the distribution
function of lcm as mentioned in [FF3, Page 26]. We prove this in section 5. Our
method is completely elementary.

Theorem 1.1. Let k ≥ 2 be an integer. For any 0 < t ≤ 1, we have

P

(
[X

(x)
1 , . . . , X

(x)
k ]

xk
> t

)
=
∑
n≤ 1

t

∫ 1

nt

(− log z)k−1

(k − 1)!
dz · pk(n) +Ot(x

−1 logk−1 x).

On the second aspect, we prove the following in section 6.

Theorem 1.2. Let k ≥ 2 be an integer. For any r > −1, we have

E

(
[X

(x)
1 , . . . , X

(x)
k ]r

xkr

)
=

1

xk

∑
n1,...,nk≤x

(
[n1, . . . , nk]

xk

)r
=

Cr,k
(r + 1)k

+ Er,k(x)
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and

E

(
[X

(x)
1 , . . . , X

(x)
k ]r

(X
(x)
1 · · ·X

(x)
k )r

)
=

1

xk

∑
n1,...,nk≤x

(
[n1, . . . , nk]

n1 · · ·nk

)r
= Cr,k + E∗r,k(x).

Here, Cr,k is the constant given in [HT, Corollary 1]. We have an expression in a
convergent Dirichlet series.

Cr,k =
∞∑
n=1

n−rpk(n), r > −1.

The error terms Er,k(x) and E∗r,k(x) are both{
Or(x

− r+1
2 logmax(2k−k−1,2k2−k−2) x) if − 1 < r ≤ 1,

Or(x
−1 logk−1 x) if r > 1.

A significance of Theorem 1.2 lies in realizing that the constant Cr,k gives a function
of a single variable r defined as a Dirichlet series. However, the series defining Cr,k
diverges at r = −1. Thus, the case r = −1 should be dealt with special care. We treat
this case in section 7.

On the third aspect, we prove the following in section 7.

Theorem 1.3. Let k ≥ 2 be an integer. We have

log2k−k−1 x� E

(
X

(x)
1 · · ·X

(x)
k

[X
(x)
1 , . . . , X

(x)
k ]

)
� log2k−k−1 x.

T. Hilberdink, F. Luca, L. Tóth [HLT, Theorem 4.1] proved that

xk � Vk(x) :=
∑

n1,...,nk≤x

n1 · · ·nk
[n1, . . . , nk]

� xk log2k−2 x.

They also conjectured in [HLT, Remark 4.2] that there is a positive constant λk such

that Vk(x) ∼ λkx
k log2k−k−1 x as x→∞. Our theorem shows that

Vk(x) � xk log2k−k−1 x.

Thus, we obtain the same order of magnitude as the conjecture.
After the author’s initial submission of this paper, D. Essouabri, C. Salinas Zavala,

L. Tóth [EST] provided a proof of [HLT, Remark 4.2] with a full asymptotic formula.
They used methods from complex analysis such as multivariable Perron’s formula,
whereas the methods of this paper are elementary. The author provided elementary
proofs of the main terms and improved the error terms by a different version of multi-
variable Perron’s formula in [K].
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2 Pairwise coprime k-tuples

Let x ≥ 2 be an integer and u = (u1, . . . , uk) ∈ Nk ∩ [1,∞). We are interested in
counting the number of k-tuples (n1, . . . , nk) ∈ Nk ∩ [1, x]k such that (ni, nj) = 1
whenever i 6= j, and (ui, ni) = 1 for each i. These are PCu tuples in [FF1]. J. Hu [H2,
Theorem 1] states that for any graph G = (V,E) with V = {1, . . . , k}, the number
Qu
G(x) of k-tuples (n1, . . . , nk) ∈ Nk ∩ [1, x]k such that (ni, nj) = 1 whenever (i, j) ∈ E,

and (ui, ni) = 1 for each i, satisfies

Qu
G(x) = AGfG(u)xk +O(θ(u)xk−1 logk−1 x),

where

AG =
∏
p∈P

(
k∑

m=0

im(G)

(
1− 1

p

)k−m
1

pm

)
,

fG(u) =
∏

p|u1u2···uk

(
1−

∑k
m=0 im,Su,p(G)(p− 1)k−m∑k
m=0 im(G)(p− 1)k−m

)
,

and
θ(u) = max

i≤k
2ω(ui).

Given a graph G = (V,E) with V = {1, . . . , k}, we say that a subset S ⊆ V is
independent if no two vertices of S are connected by an edge in G. Here, im(G) is the
number of independent sets of cardinality m and im,S(G) is the number of independent
sets of cardinality m which contains a vertex in S. The set of indices i with 1 ≤ i ≤ k
such that d|ui is denoted by Su,d. We apply this theorem in case G = Kk is the
complete graph. We have i0(G) = 1, i1(G) = k, and ij(G) = 0 if j ≥ 2. Thus, we have
AG = Tk. If p|u1u2 · · ·uk, we have i0,Su,p = 0, i1,Su,p = #{1 ≤ i ≤ k : p|ui} = |Su,p|,
and ij,Su,p = 0 if j ≥ 2.

Qu
Kk

(x) = xkTk
∏

p|u1u2···uk

(
1− |Su,p|

p+ k − 1

)
+O(θ(u)xk−1 logk−1 x).

Note that J. Fernández, P. Fernández [FF2, Theorem 3.1] obtained the main term
in case u is a pairwise coprime (PC) k-tuple. The inductive proof in [H2] readily
generalizes to the counting of tuples in arbitrary cubes. Let a = (a1, . . . , ak) ∈ Nk.
Denote byQu

Kk
(a, x) the tuples in

∏
i[1, x/ai] satisfying (ni, nj) = 1 whenever (i, j) ∈ E,

and (ui, ni) = 1 for each i. Then we have

Qu
Kk

(a, x) =
xk

a1a2 · · · ak
Tk

∏
p|u1u2···uk

(
1− |Su,p|

p+ k − 1

)
+O(θ(u)xk−1 logk−1 x).

We would like to extend this asymptotic formula where each tuple is weighted by
(ni/(x/ai))

r with r > −1, also by the characteristic function of (ni/(x/ai))i≤k ∈
{(s1, . . . , sk) ∈ [0, 1]k : s1s2 · · · sk > t}. Let f(s) = f(s1, . . . , sk) be one of the fol-
lowing functions

f(s) = (s1 · · · sk)r, r > −1 or

f(s) is the characteristic function of {s ∈ [0, 1]k : s1s2 · · · sk > t}.
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Lemma 2.1. Let a = (a1, . . . , ak) ∈ Nk, u = (u1, . . . , uk) ∈ Nk, and s = (s1, . . . , sk) ∈
[0, 1]k. Let Qu

Kk,f
(a, x) be the sum over pairwise coprime k-tuples (n1, . . . , nk) in∏

i≤k[1, x/ai] such that (ui, ni) = 1 for each i, and each tuple is weighted by f((ni/(x/ai))i≤k).
Then for r ≥ 0,

Qu
Kk,f

(a, x) =
xkTk

a1a2 · · · ak

∫
[0,1]k

f(s)ds
∏

p|u1u2···uk

(
1− |Su,p|

p+ k − 1

)
+O(θ(u)xk−1 logk−1 x).

(2)
If −1 < r < 0, there is an additional error term

Or

(
xk−1+|r|

(
1

a
|r|
1 a2 · · · ak

+
1

a1a
|r|
2 a3 · · · ak

+ · · ·+ 1

a1 · · · ak−1a|r|k

))
.

Proof. For simplicity of notation, we write x/ai = bi for each i. We follow the inductive
proof given in [H2]. We include the proof for completeness. If k = 1, the desired sum
is ∑

n≤b1
(n,u1)=1

f(n/b1).

If f(s) = sr, r ≥ 0, then∑
n≤b1

(n,u1)=1

(n/b1)
r =

∑
d|u1

µ(d)
∑
n≤b1
d|n

(
n

b1

)r

=
∑
d|u1

µ(d)
1

br1

∑
k≤ b1

d

drkr =
∑
d|u1

µ(d)

(
d

b1

)r((
b1
d

)r+1
1

r + 1
+O

((
b1
d

)r))

=
∑
d|u1

µ(d)

d

b1
r + 1

+O

∑
d|u1

|µ(d)|

 = b1T1

∫ 1

0

srds
∏
p|u1

(
1− 1

p

)
+O(2ω(u1)).

If f(s) is the characteristic function of (t, 1], then∑
n≤b1

(n,u1)=1
n/b1>t

1 =
∑
d|u1

µ(d)
∑

tb1<n≤b1
d|n

1

=
∑
d|u1

µ(d)
∑

tb1
d
<k≤ b1

d

1 =
∑
d|u1

µ(d)

(
(1− t)b1

d
+O(1)

)

=
∑
d|u1

µ(d)

d
(1− t)b1 +O

∑
d|u1

|µ(d)|

 = b1T1

∫ 1

t

ds
∏
p|u1

(
1− 1

p

)
+O(2ω(u1)).

Thus, the results are true for both functions when k = 1. Suppose that the result is
true for some k ≥ 1 and f(s) = (s1 · · · sk)r, r ≥ 0. That is,

Qu
Kk,f

(a, x) =
b1b2 · · · bkTk

(r + 1)k
fk(u) +O(θ(u)xk−1 logk−1 x),
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where

fk(u) =
∏

p|u1u2···uk

(
1− |Su,p|

p+ k − 1

)
.

To prove the result for k + 1, we write

Q
u,uk+1

Kk+1,fs
r
k+1

(a, ak+1, x) =
∑
j≤bk+1

(j,uk+1)=1

(
j

bk+1

)r
Qju
Kk,f

(a, x)

=
∑
j≤bk+1

(j,uk+1)=1

(
j

bk+1

)r (
b1 · · · bkTk
(r + 1)k

fk(ju) +O(θ(ju)xk−1 logk−1 x)

)

=
∑
j≤bk+1

(j,uk+1)=1

(
j

bk+1

)r
b1 · · · bkTk
(r + 1)k

fk(ju) +O(θ(u)xk logk x).

Since

fk(ju) = fk(u)
∑
d|j

µ(d)
∏
p|d

k − |Su,p|
p+ k − 1− |Su,p|

,

we focus on the sum over j. That is,∑
j≤bk+1

(j,uk+1)=1

(
j

bk+1

)r∑
d|j

µ(d)gk(d),

where

gk(d) =
∏
p|d

k − |Su,p|
p+ k − 1− |Su,p|

≤
∏
p|d

k

p+ k − 1
≤ kω(d)

d

if d is square-free.
Substituting de = j in the double sum, we have∑
de≤bk+1

(de,uk+1)=1

(
de

bk+1

)r
µ(d)gk(d) =

∑
d≤bk+1

(d,uk+1)=1

µ(d)gk(d)
∑

e≤bk+1/d
(e,uk+1)=1

(
d

bk+1

)r
er

=
∑

d≤bk+1

(d,uk+1)=1

µ(d)gk(d)

(
bk+1

d

1

r + 1
f1(uk+1) +O(2ω(uk+1))

)

=
∑

d≤bk+1

(d,uk+1)=1

µ(d)gk(d)
bk+1

d

1

r + 1
f1(uk+1) +O(θ(uk+1) logk x)

=
bk+1f1(uk+1)

r + 1

∑
(d,uk+1)=1

µ(d)gk(d)

d
+O(logk−1 x) +O(θ(uk+1) logk x).

The sum over d is a convergent Euler product∏
p-uk+1

(
1− gk(p)

p

)
.
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Rearranging the product over primes, we obtain the desired result for k+ 1 as follows.

Q
u,uk+1

Kk+1,fs
r
k+1

(a, ak+1, x) =
b1b2 · · · bk+1Tk+1

(r + 1)k+1
fk+1(u, uk+1) +O(θ(u, uk+1)x

k logk x).

Suppose that the result is true for k with f is the characteristic function of the set
{(s1, . . . , sk) ∈ [0, 1]k | s1 · · · sk > t}. That is, for 0 < t ≤ 1,

Qu
Kk,f

(a, x) = b1b2 · · · bkTkfk(u)

∫
∀i,0≤si≤1
s1s2···sk>t

ds +O(θ(u)xk−1 logk−1 x).

To prove the result for k + 1, we proceed as before. Denote by f the characteristic
function of the set {(s1, . . . , sk+1) ∈ [0, 1]k+1 | s1 · · · sk+1 > t}. Then we have

Q
u,uk+1

Kk+1,f
(a, ak+1, x)

=
∑
j≤bk+1

(j,uk+1)=1

b1 · · · bkTk ∫ ∀i,0≤si≤1
s1···sk>t/(j/bk+1)

dsfk(ju) +O(θ(ju)xk−1 logk−1 x)


=

∑
j≤bk+1

(j,uk+1)=1

b1 · · · bkTk
∫

∀i,0≤si≤1
s1···sk>t/(j/bk+1)

dsfk(ju) +O(θ(u)xk logk x).

We obtain by the substitutions de = j and mv = e,∑
j≤bk+1

(j,uk+1)=1

∫
∀i,0≤si≤1

s1···sk>t/(j/bk+1)

ds
∑
d|j

µ(d)gk(d) =
∑

d≤bk+1

(d,uk+1)=1

µ(d)gk(d)
∑

e≤
bk+1
d

(e,uk+1)=1

∫
∀i,0≤si≤1

s1···sk>t/(de/bk+1)

ds

=
∑

d≤bk+1

(d,uk+1)=1

µ(d)gk(d)
∑

m|uk+1

µ(m)
∑

v≤
bk+1
dm

∫
∀i,0≤si≤1

s1···sk>t/(v/(bk+1/dm))

ds

=
∑

d≤bk+1

(d,uk+1)=1

µ(d)gk(d)
∑

m|uk+1

µ(m)

(
bk+1

dm

∫
∀i,0≤si≤1

s1···sksk+1>t

dsdsk+1 +O(1)

)

= bk+1f1(uk+1)

∫
∀i,0≤si≤1

s1···sksk+1>t

d(s, sk+1)
∑

(d,uk+1)=1

µ(d)gk(d)

d

+O(logk−1 x) +O(θ(uk+1) logk x).

Rearranging the product over primes, we obtain the desired result for k+ 1 as follows.

Q
u,uk+1

Kk+1,f
(a, ak+1, x) =b1b2 · · · bk+1Tk+1

∫
∀i,0≤si≤1

s1···sksk+1>t

d(s, sk+1)fk+1(u, uk+1)

+O(θ(u, uk+1)x
k logk x).

If −1 < r < 0, remark that∑
n≤x

nr =
1

r + 1
xr+1 + ζ(−r) +O(xr).

Applying this in the base step and the induction step of the proof, we see that the
additional error term appears.
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3 Divisibility conditions

Recall from [BMR] that for each prime p, (Gj(p)) is a sequence of independent random
variables such that Gj(p) has a geometric distribution such that

Gj(p) = m with probability

(
1− 1

p

)
1

pm
for m ≥ 0,

and

Rk :=
∏
p∈P

p
max
j≤k
Gj(p)−

∑
j≤k
Gj(p)
∈ 1/N.

Let X
(x)
j be the discrete uniform distribution over the set {1, . . . , x}. The distribution

Gj(p) is a limiting distribution (as x→∞) of

{P(X
(x)
j is divisible by pm and not by pm+1)}m≥0.

It follows that we also have

lim
x→∞

P(X
(x)
j is divisible by pm) =

1

pm
= P(Gj(p) ≥ m).

Thus, we see that the value of Gj(p) yields a p-power divisibility condition on X
(x)
j .

We write p-power divisibility condition on k-tuple (X
(x)
1 , . . . , X

(x)
k ) as a tagged vector

〈e1, . . . , ei ↑, . . . , ek〉p, each component may have a tag ↑. The use of uparrow notation
is to indicate the particular number ”or higher”. If we have the tag on a component
i, then it means pei |X(x)

i : i.e. Gi(p) ≥ ei. A component i without tag means pei ||X(x)
i :

i.e. Gi(p) = ei. For example, a tagged vector 〈2 ↑, 3, 4 ↑, 6〉7 means 72|X(x)
1 , 73||X(x)

2 ,

74|X(x)
3 , and 76||X(x)

4 (or G1(7) ≥ 2, G2(7) = 3, G3(7) ≥ 4, and G4(7) = 6). Let S ⊆ P
be a subset of prime numbers. We may combine p-power divisibility conditions of
k-tuples for p ∈ S. For such combined divisibility conditions, we write

∧p∈S〈ep,1, . . . , ep,i ↑, . . . , ep,k〉p.

For example, 〈2, 3 ↑〉2 ∧ 〈4 ↑, 5〉3 means 22||X(x)
1 , 23|X(x)

2 , 34|X(x)
1 , and 35||X(x)

2 : i.e.
G1(2) = 2, G2(2) ≥ 3, G1(3) ≥ 4, and G2(3) = 5. For each prime p with divisibility
condition 〈ep,1, . . . , ep,k〉p without ↑, consider

i0 = max{i ≤ k : ep,i = max
j≤k

ep,j}.

We call ep,i0 a dropped maximum. This naming is because max
j≤k
Gj(p)−

∑
j≤k
Gj(p) drops

the maximum and sums up the remaining k − 1 numbers. For

i1 = max{i ≤ k : ep,i = max
j≤k,j 6=i0

ep,j},

we call ep,i1 the second maximum.
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Let n ∈ N. We will find P(Rk = 1
n
) = pk(n) from the definition of Rk. Let pe||n.

Denote by x = (x1, . . . , xk−1) the (k − 1)-tuple of nonnegative integers with a sum
equals e. Let

i1 := i1(x) = max{i ≤ k − 1 : xi = max
j≤k−1

xj}

so that xi1 is the maximum entry of x. Note that the second maximum of a valid
divisibility condition is necessarily the maximum of the entries of x. Then the following
table shows all possible divisibility conditions.

Divisibility conditions Dropped position

〈x1, . . . , xi1 , xi1+1, . . . , xk−1, xi1 ↑〉p k
〈x1, . . . , xi1 , xi1+1, . . . , xi1 ↑, xk−1〉p k − 1

...
...

〈x1, . . . , xi1 , xi1 ↑, xi1+1, . . . , xk−1〉p i1 + 1

〈x1, . . . , xi1−1, (xi1 + 1) ↑, xi1 , xi1+1, . . . , xk−1〉p i1
〈x1, . . . , (xi1 + 1) ↑, xi1−1, xi1 , . . . , xk−1〉p i1 − 1

...
...

〈(xi1 + 1) ↑, x1, . . . , xi1 , xi1+1, . . . , xk−1〉p 1

The probability that p-part of Rk equals e is∑
x1+···+xk−1=e

xi≥0

(
1− 1

p

)k−1
1

pe

(
k − i1(x)

pxi1
+
i1(x)

pxi1+1

)
.

By the independence of Gj(p) for any prime p and j ≥ 1, we obtain

pk(n) =
∏
p∈P

∑
x1+···+xk−1=e

xi≥0

(
1− 1

p

)k−1
1

pe

(
k − i1(x)

pxi1
+
i1(x)

pxi1+1

)
. (3)

Note that if a prime q does not divide n, then e = 0, xi1 = 0, and i1(x) = k − 1, so it
contributes (

1− 1

q

)k−1(
1 +

k − 1

q

)
.

Therefore, the product (3) converges. We are able to factor out Tk and rewrite (3) as

pk(n) = Tk
∏
pe||n

1

1 + (k − 1)/p

∑
x1+···+xk−1=e

xi≥0

1

pe

(
k − i1(x)

pxi1
+
i1(x)

pxi1+1

)
. (4)

We have a single variable function Fk(s) on <s > −1 defined as a Dirichlet series

Fk(s) =
∞∑
n=1

n−s pk(n)

= Tk
∏
p∈P

1 +
1

1 + (k − 1)/p

∞∑
e=1

∑
x1+···+xk−1=e

xi≥0

1

p(s+1)e

(
k − i1(x)

pxi1
+
i1(x)

pxi1+1

) .
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Note that if r > −1, Fk(r) = Cr,k in [HT, Corollary 1]. Moreover, the p-part of Euler
product can be written in a finite sum. This is [BMR, Corollary 2.7].

Fk(s) = ERs
k =

∏
p∈P

(
1− 1

p

)k
(

1− 1
ps+1

)k k∑
j=1

(
k

j

)
(−1)j−1

1− 1
pj(s+1)

1− 1
p(j−1)(s+1)+1

.

It will be an interesting problem showing the two expressions of Fk(s) are equivalent
directly by means of rearranging sums and products. However, we did not try this
here.

4 Distribution of lcm - main lemma

In [BMR], the limiting distribution of
[X

(x)
1 ,...,X

(x)
k ]

X
(x)
1 ···X

(x)
k

is proven to be Rk. Thus, we must

have

lim
x→∞

P

(
[X

(x)
1 , . . . , X

(x)
k ]

X
(x)
1 · · ·X

(x)
k

=
1

n

)
= pk(n).

We would like to have a quantitative asymptotic formula that is uniform on both n
and x. We apply the method of section 3 to prove the following main lemma of this
paper. Denote by P

(1)
x (n) the following item

P (1)
x (n) = P

(
[X

(x)
1 , . . . , X

(x)
k ]

X
(x)
1 · · ·X

(x)
k

=
1

n

)
.

We have

Lemma 4.1. Let k ≥ 2. Uniformly for n ∈ N and x ≥ 2, we have

P (1)
x (n) = pk(n) +O

(
τk−1(n)(2k)ω(n)x−1 logk−1 x

)
. (5)

Proof. Let n = pe11 · · · pemm where pi’s are distinct primes and ei ≥ 1. For each pi, a
solution of x1 + · · · + xk−1 = ei gives rise to k distinct divisibility conditions (see the
table in section 3, each has exactly one ↑). The number of solutions of x1 + · · · +
xk−1 = ei is τk−1(p

ei
i ). Thus, each prime factor of n gives rise to τk−1(p

ei
i )k divisibility

conditions. The number of ways to combine all possible p-power divisibility conditions
is
∏

p|n(τk−1(p
ei
i )k) = τk−1(n)kω(n). Denote by Bn the set of all combined divisibility

conditions so that |Bn| = τk−1(n)kω(n). Let M ∈ Bn be written in the following form

Divisibility condition Tagged (↑) entry

〈e1,1, . . . , e1,k〉p1 e1,j1 ↑
〈e2,1, . . . , e2,k〉p2 e2,j2 ↑

...
...

〈em,1, . . . , em,k〉pm em,jm ↑

11



We count the number of k-tuples with the following conditions.

(n1, . . . , nk) ∈ [1, x]k and M ∈ Bn is satisfied. (∗)

Let
v1 =

n1

a1
, . . . , and vk =

nk
ak
,

where a1 = p
e1,1
1 p

e2,1
2 · · · pem,1m , a2 = p

e1,2
1 p

e2,2
2 · · · pem,2m , . . . , and ak = p

e1,k
1 p

e2,k
2 · · · pem,km .

Let I1, . . . , Ik be indicator functions with

Ij(i) =

{
0 if j = ji

1 if j 6= ji.

Let uj =
∏

i≤m p
Ij(i)
i , j ≤ k, u = 〈u1, . . . , uk〉, and a = 〈a1, . . . , ak〉. Then (∗) is

equivalent to

(v1, . . . , vn) ∈
∏
i≤k

[
1,
x

ai

]
,∀j ≤ k, (uj, vj) = 1, and (v1, . . . , vk) is pairwise coprime. (∗∗)

By r = 0 case of Lemma 2.1, the number of tuples satisfying (∗∗) is

Qu
Kk,1

(a, x) =
xkTk

a1a2 · · · ak

∏
p|u1u2···uk

(
1− |Su,p|

p+ k − 1

)
+O(θ(u)xk−1 logk−1 x).

The set of prime factors of u1 · · ·uk and that of n are identical. Since each row of M
has only one tagged (↑) entry, |Su,pi | = k − 1 for each i ≤ m. Thus, the number of
tuples (n1, . . . , nk) satisfying (∗) is

xkTk
a1a2 · · · ak

∏
p|n

(
1− k − 1

p+ k − 1

)
+O(2ω(n)xk−1 logk−1 x).

Using 1− (k − 1)/(p+ k − 1) = p/(p+ k − 1) = 1/(1 + (k − 1)/p) and summing over
all M ∈ Bn, we obtain the result.

Define

P (2)
x (n) =

1

xk

∑
∀i≤k,ni≤x

[n1,...,nk]

n1···nk
= 1
n

(n1

x

)r
· · ·
(nk
x

)r
.

We adopt notations x, xi1 , and i1(x) of section 3. Let qk(n) be the sum of the following
terms arising from each M ∈ Bn,

1

a
|r|
1 a2 · · · ak

+
1

a1a
|r|
2 a3 · · · ak

+ · · ·+ 1

a1 · · · ak−1a|r|k
.

Applying the functions f(s) given in Lemma 2.1, we have the analogous results.

12



Lemma 4.2. Uniformly for x ≥ 2 and n ∈ N, for any r ≥ 0, we have

P (2)
x (n) =

1

(r + 1)k
pk(n) +Or

(
τk−1(n)(2k)ω(n)x−1 logk−1 x

)
. (6)

If −1 < r < 0, we have (6) with an additional error term

Or(qk(n)x−(r+1)).

Moreover, if 0 < t ≤ 1, we have

1

xk

∑
∀i≤k,ni≤x

[n1,...,nk]

n1···nk
= 1
n

n1···nk>txk

1 = (1− Ωk(t))pk(n) +O
(
τk−1(n)(2k)ω(n)x−1 logk−1 x

)
. (7)

Proof. In the proof of Lemma 4.1, replace Qu
Kk,1

(a, x) by Qu
Kk,f

(a, x). We have

f(s) = (s1 · · · sk)r for (6) and

f(s) is the characteristic function of the set {(s1, . . . , sk) ∈ [0, 1]k : s1 · · · sk > t}

for (7). Then apply Lemma 2.1. The additional error term in case −1 < r < 0 is due
to the error term in Lemma 2.1.

Recall that Ωk(t), 0 < t ≤ 1 is the volume of the set

{(s1, . . . , sk) ∈ [0, 1]k : s1 · · · sk ≤ t}.

This volume can be written as

Ωk(t) =

∫ t

0

(− log z)k−1

(k − 1)!
dz =

∫ ∞
− log t

uk−1e−u

(k − 1)!
du =

∑
j<k

t(− log t)j

j!
.

The first identity is because (− log z)k−1/(k − 1)! is the probability density function
of
∏

j≤k Uj where (Uj) is a sequence of the independent uniform distribution on (0, 1).
The second identity is obtained by the change of variable − log z = u. The last identity
is due to the relation between Erlang distribution and Poisson distribution.

We study the Dirichlet series
∑∞

n=1 n
−spk(n). To prove Theorem 1.2 and 1.3, we

need to study the behavior of the series at s = −1. In the following theorem, we prove
results of Tauberian type. Let gk(n) = T−1k pk(n)

∏
p|n(1 + (k − 1)/p).

Lemma 4.3. The Dirichlet series Fk(s) =
∑∞

n=1 n
−spk(n) is convergent if <(s) > −1.

Its Euler product is

Fk(s) = Tk
∏
p∈P

1 +
1

1 + (k − 1)/p

∞∑
e=1

∑
x1+···+xk−1=e

xi≥0

1

p(s+1)e

(
k − i1(x)

pxi1
+
i1(x)

pxi1+1

) .
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Similarly, we define Gk(s) =
∑∞

n=1 n
−sgk(n). This series is convergent if <(s) > −1

with an Euler product

Gk(s) =
∏
p∈P

1 +
∞∑
e=1

∑
x1+···+xk−1=e

xi≥0

1

p(s+1)e

(
k − i1(x)

pxi1
+
i1(x)

pxi1+1

) .

We have xi1 ≥ 1 and

∞∑
e=1

∑
x1+···+xk−1=e
xi≥0, xi1=1

(k − i1(x)) = 2k − k − 1. (8)

Consequently, for some constants 0 < ck < dk,∑
n≤x

npk(n) ∼ ck log2k−k−1 x and
∑
n≤x

ngk(n) ∼ dk log2k−k−1 x. (9)

Proof. The Euler product of Fk(s) is obtained in section 3 and that of Gk(s) is clear
from the definition of gk(n). It is clear that xi1 ≥ 1 and i1 ≤ k − 1. If xi1 = 1, then
the sum (8) is restricted to a finite sum over e ≤ k − 1. For each i1 ≤ k − 1, we have
xi1+1 = · · · = xk−1 = 0 and xj ∈ {0, 1} for j ≤ i1 − 1. Thus, the sum (8) is∑

i1≤k−1

2i1−1(k − i1) = 2k−2 · 1 + 2k−1 · 2 + · · ·+ 20 · (k − 1) = 2k − k − 1.

Consequently, we see that

Hk(s) = Fk(s)ζ(s+ 2)−(2
k−k−1) and Ik(s) = Gk(s)ζ(s+ 2)−(2

k−k−1)

both have convergent Dirichlet series if <(s) > −1 − 1
2(k−1) . By Selberg-Delange

method [Te, Section 5.5, Theorem 5] or Tauberian theorem [MV, Theorem 5.11], we
have (9) for

ck =
Hk(−1)

(2k − k − 1)!
and dk =

Ik(−1)

(2k − k − 1)!
.

We have

Hk(−1) = Tk
∏
p∈P

1 +
1

1 + (k − 1)/p

∞∑
e=1

∑
x1+···+xk−1=e

xi≥0

(
k − i1(x)

pxi1
+
i1(x)

pxi1+1

)(1− 1

p

)2k−k−1

and

Ik(−1) =
∏
p∈P

1 +
∞∑
e=1

∑
x1+···+xk−1=e

xi≥0

(
k − i1(x)

pxi1
+
i1(x)

pxi1+1

)(1− 1

p

)2k−k−1

.

Clearly, Hk(−1) < Ik(−1) and

Hk(−1) ≥ Tk
∏
p∈P

(
1 +

2k − k − 1

p+ k − 1

)(
1− 1

p

)2k−k−1

.

Therefore, 0 < ck < dk.
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The values of n ∈ N in
[X

(x)
1 ,...,X

(x)
k ]

X
(x)
1 ···X

(x)
k

= 1
n

are within 1 ≤ n ≤ xk−1. Usually the lcm is

large and n is small, but the large values of n around xk−1 require careful control. These
large values contribute to a large error term especially when n > x and −1 ≤ r ≤ 1.
In this regard, we would like to have uniform upper bounds in the direction of Lemma
4.1 and 4.2. The upper bounds will be useful in the proof of Theorem 1.2 and 1.3. To
this end, we modify the proof of Lemma 4.1.

Lemma 4.4. Let k ≥ 2. Uniformly for n ∈ N and x ≥ 2, we have

P (1)
x (n) ≤ gk(n) (10)

Proof. In the proof of Lemma 4.1, we drop the coprimality conditions and trivially

bound it by the number of tuples (v1, . . . , vk) in
∏

i≤k

[
1, x

ai

]
. That is

∏
i≤k

⌊
x

ai

⌋
≤ xk

a1 · · · ak
.

Then we sum over all M ∈ Bn to obtain the result.

We also have similar upper bounds for weighted sums.

Lemma 4.5. Uniformly for x ≥ 2 and n ∈ N, we have

P (2)
x (n) ≤ gk(n) if r ≥ 0. (11)

On the other hand, if −1 < r < 0,

P (2)
x (n) ≤ 1

(r + 1)k
gk(n). (12)

Proof. In the proof of Lemma 4.1, we drop the coprimality conditions and trivially

bound it by the weighted sum of tuples (v1, . . . , vk) in
∏

i≤k

[
1, x

ai

]
. If r ≥ 0,

∑
∀i≤k,vi≤x/ai

(
v1
x/a1

)r
· · ·
(

vk
x/ak

)r
≤
∏
i≤k

⌊
x

ai

⌋
≤ xk

a1 · · · ak
.

In case −1 < r < 0, the function s 7→ sr is decreasing, hence

∑
∀i≤k,vi≤x/ai

(
v1
x/a1

)r
· · ·
(

vk
x/ak

)r
≤ xk

a1 · · · ak

(∫ 1

0

srds

)k
=

xk

a1 · · · ak
1

(r + 1)k
.

Then we sum over all M ∈ Bn to obtain the result.
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5 Distribution of lcm - proof of Theorem 1.1

We have the equivalence of events

[X
(x)
1 , . . . , X

(x)
k ]

xk
> t ⇐⇒ ∃n ∈ N,

[X
(x)
1 , . . . , X

(x)
k ]

X
(x)
1 · · ·X

(x)
k

=
1

n
and

X
(x)
1 · · ·X

(x)
k

xk
> nt.

Since the event
X

(x)
1 · · ·X

(x)
k

xk
> nt

is null whenever nt > 1, we may write

P

(
[X

(x)
1 , . . . , X

(x)
k ]

xk
> t

)
=
∑
n≤ 1

t

P

(
[X

(x)
1 , . . . , X

(x)
k ]

X
(x)
1 · · ·X

(x)
k

=
1

n
and

X
(x)
1 · · ·X

(x)
k

xk
> nt

)
.

By Lemma 4.2 (7), the sum on the right-hand side is∑
n≤ 1

t

(
(1− Ωk(nt))pk(n) +O

(
τk−1(n)(2k)ω(n)x−1 logk−1 x

))
=
∑
n≤ 1

t

(1− Ωk(nt))pk(n) +Ot(x
−1 logk−1 x)

=
∑
n≤ 1

t

∫ 1

nt

(− log z)k−1

(k − 1)!
dz · pk(n) +Ot(x

−1 logk−1 x).

This completes the proof of Theorem 1.1.

6 Moments of lcm - proof of Theorem 1.2

Let 1 ≤ n ≤ xk−1 be an integer and r > −1 be a real number. we have

E

(
[X

(x)
1 , . . . , X

(x)
k ]r

(X
(x)
1 · · ·X

(x)
k )r

)
=

∑
n≤xk−1

n−rP (1)
x (n) and

E

(
[X

(x)
1 , . . . , X

(x)
k ]r

xkr

)
=

∑
n≤xk−1

n−rP (2)
x (n).

Suppose that r > 1. By Lemma 4.3, 4.4, and 4.5, we have∑
x<n≤xk−1

n−rP (j)
x (n)�

∑
x<n≤xk−1

n−rgk(n) ≤ 1

xr+1

∑
n≤xk−1

ngk(n)� xε

xr+1
for j = 1, 2.

Also,
∑∞

n=1 n
−rpk(n) is convergent and∑

n>x

n−rpk(n)� x−(r+1)+ε.
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By Lemma 4.1, 4.2, and the convergence of
∑∞

n=1 n
−rτk−1(n)(2k)ω(n), we have the result

of Theorem 1.2 for r > 1.
Suppose that −1 < r ≤ 1. Again by Lemma 4.3, 4.4, and 4.5, we have∑
√
x<n≤xk−1

n−rP (j)
x (n)� x−

r+1
2

∑
n≤xk−1

ngk(n)� x−
r+1
2 log2k−k−1 x for j = 1, 2.

Also,
∑∞

n=1 n
−rpk(n) is convergent and∑

n>
√
x

n−rpk(n)� x−
r+1
2 log2k−k−1 x.

The sum of the error terms of Lemma 4.1 and 4.2 over n ≤
√
x is∑

n≤
√
x

n−rτk−1(n)(2k)ω(n)x−1 logk−1 x� x
1−r
2
−1 log2k2−2k−1+k−1 x = x−

r+1
2 log2k2−k−2 x

and the extra error term in case −1 < r < 0 contributes∑
n≤
√
x

n−rqk(n)x−(r+1).

If −1 < r < 0, the Dirichlet series
∑
n−sqk(n) absolutely convergent on <s > r. Thus,

we have ∑
n≤
√
x

n−rqk(n)x−(r+1) �
∑
n≤
√
x

n−r
x
ε
2

nε
qk(n)x−(r+1) � x−(r+1)+ε

which is � x−
r+1
2 log2k−k−1 x. Therefore, we have the result of Theorem 1.2 with the

error x−
r+1
2 logmax(2k−k−1,2k2−k−2) x.

7 Inverse moment of lcm - proof of Theorem 1.3

We begin with

E

(
X

(x)
1 · · ·X

(x)
k

[X
(x)
1 , . . . , X

(x)
k ]

)
=

1

xk

∑
n1,...,nk≤x

n1 · · ·nk
[n1, . . . , nk]

=
∑

n≤xk−1

nP (1)
x (n).

For the lower bound, we add the terms up to x1/2−δ for δ > 0. Then

∑
n≤x1/2−δ

nP (1)
x (n) =

∑
n≤x1/2−δ

npk(n) +O

x−1 logk−1 x
∑

n≤x1/2−δ
nτk−1(n)(2k)ω(n)

 .

By Lemma 4.3,

∑
n≤x1/2−δ

npk(n) ∼ ck log2k−k−1(x1/2−δ) = ck

(
1

2
− δ
)2k−k−1

log2k−k−1 x.
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The error term is O(x−2δ+ε) for any ε < 2δ and it is negligible. Thus, letting δ → 0,
we obtain

lim inf
x→∞

1

xk log2k−k−1 x

∑
n1,...,nk≤x

n1 · · ·nk
[n1, . . . , nk]

≥ ck
22k−k−1 .

For the upper bound, we apply Lemma 4.4. Then we have∑
n≤xk−1

nP (1)
x (n) ≤

∑
n≤xk−1

ngk(n).

Thus, by Lemma 4.3, we have∑
n≤xk−1

ngk(n) ∼ dk log2k−k−1(xk−1) = dk(k − 1)2
k−k−1 log2k−k−1 x.

Hence, we obtain

lim sup
x→∞

1

xk log2k−k−1 x

∑
n1,...,nk≤x

n1 · · ·nk
[n1, . . . , nk]

≤ dk(k − 1)2
k−k−1.

Acknowledgment.
The author thanks the referee for pointing out a mistake in the proof of Lemma 2.1

from the initial submission of this paper. This led to the author to realize the presence
of the extra error term in case −1 < r < 0.

References

[BMR] A. Bostan, A. Marynych, K. Raschel, On the least common multiple of several
random integers, J. Number Theory, 204 (2019), pp. 113-133.
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