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KIM, SUNGJIN

1. Introduction

In rough terms, a local-global principle is a statement that asserts that a certain
property is true globally if and only if it is true everywhere locally. We will give
a proof of Hasse-Minkowski theorem over Q, which is the best known example for
local-global principles

Theorem 1.1. (Hasse-Minkowski) Let K be a number field and let q be a
quadratic form in n variables with coefficients in K. Then q represents 0 in K if
and only if it represents 0 in every completion of K.

2. Basic results on quadratic forms

Let V be a K-vector space of finite dimension n. Recall that a quadratic form on
V is a map q from V to K such that q(ax) = a2q(x) for all x ∈ V and a ∈ K, and
b(x, y) = (q(x+y)−q(x)−q(y))/2 is a bilinear form so that q(x) = b(x, x). Thus, for
a given basis {ei} for V , and x =

∑
i xiei, we have q(x) = XtQX, where X is the

column vector of the xi, and Q is a symmetric matrix having b(ei, ej) as ij-th entry.
If {e′i} is another bases of V and if P is the matrix expressing e′i in terms of the ei,
then with X = PX ′, we have q(x) = XtQX = X ′tP tQPX ′; hence the matrix of
q in the new basis is equal to P tQP . In particular, det(P tQP ) = det(Q)det(P )2,
so the class of det(Q) modulo nonzero squares of K is independent of the chosen
basis and called the discriminant of q, denoted by d(q). If V = Kn and (ei) is the
canonical basis of V , we can identify a quadratic form on V with a homogeneous
polynomial of degree 2 in n variables over K by the formula

q(x1, · · · , xn) =
∑

1≤i,j≤n

qi,jxixj ,

where the qi,j are the entries of the symmetric matrix Q. We call Q the coefficient
matrix of q.

Definition 2.1. Two quadratic forms q and q′ with coefficient matrices Q, and
Q′ respectively, are equivalent if there exists P ∈ GLn(K) such that Q′ = P tQP .
Denoted q ∼ q′.

Using Gauss’s reduction of quadratic forms into sums of squares, gives

Theorem 2.1. Let q be a quadratic form in n variables. There exists an equivalent
form that is a diagonal quadratic form; in other words, there exist ai ∈ K such
that q ∼

∑
1≤i≤n aix

2
i .

We say that a form q represents a ∈ K if there exists x ∈ Kn such that q(x) = a,
with added condition that x 6= 0 when a = 0.
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Theorem 2.2. Let q be a nondegenerate quadratic form in n variables and let
c ∈ K∗. The following conditions are equivalent:
(1) The form q represents c.
(2) There exists a quadratic form q1 in n− 1 variables such that q ∼ cx2

0 ⊕ q1.
(3) The quadratic form q 	 cx2

0 represents 0 in K.

3. quadratic forms over finite and local fields

We begin with the simplest possible fields, the finite fields. Let q = pk be a
prime power, with p 6= 2.

Theorem 3.1. A quadratic form over Fq of rank n ≥ 2 represents all elements of
F∗q , and a quadratic form of rank n ≥ 3 represents all elements of Fq.

Proof. By Theorem2.1, we assume that q =
∑

1≤i≤m aix
2
i with a1a2 6= 0. Let

a ∈ Fq. We choose xi = 0 for all i ≥ 3. Since q is odd the map x 7→ x2 is a group
homomorphism of F∗q into itself, and its kernel has two elements. It follows that its
image has (q− 1)/2 elements, so adding 0, there are (q+ 1)/2 squares in Fq. Since
a1a2 6= 0 it follows that the subsets {a1x

2
1} and {a−a2x

2
2} of Fq also have (q+1)/2

elements. Hence they have nonempty intersection. �

Corollary 3.1. Let c ∈ F∗q that is not a square. A nondegenerate quadratic form
over Fq is equivalent to x2

1 + · · · + x2
n−1 + ax2

n with a = 1 if its discriminant is a
square, and with a = c otherwise.

Proof. Use induction on n and previous theorem. �

Corollary 3.2. Two nondegenerate quadratic forms over Fq are equivalent if and
only if they have the same rank and the same discriminant in F∗q/F∗2q .

4. definition of the local hilbert symbol

We introduce the Hilbert symbol, which will be sufficient for the local study of
quadratic forms. We shall omit the proof here.

Definition 4.1. If a and b are in K∗, we set (a, b) = 1 if the equation ax2+by2 = z2

has a nontrivial solution, and (a, b) = −1 otherwise. The number (a, b) is called
the Hilbert symbol of a and b.

Proposition 4.1. Let a and b be in K∗. We have (a, b) = 1 if and only if a ∈
N(K(

√
b)∗).

Proposition 4.2. We have the following formulas, where all the elements that
occur are assumed to be nonzero:
(1) (a, b) = (b, a) and (a, c2) = 1.
(2) (a,−a) = (a, 1− a) = 1.
(3) (a, b) = 1 implies (aa′, b) = (a′, b).
(4) (a, b) = (a,−ab) = (a, (1− a)b).

We state the explicit computation of the Hilbert symbol when K = Qp. We
denote as usual by Up the group of p-adic units.
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Theorem 4.1. (1) For K = R, we have (a, b) = 01 if a < 0 and b < 0, and (a, b) = 1
if a or b is positive.
(2) For K = Qp with p 6= 2, write a = pαa1, b = pβb1 with a1 and b1 in Up. Then

(a, b) = (−1)αβ(p−1)/2
(a1

p

)β(b1
p

)α
.

(3) For K = Q2, with the same notation we have

(a, b) = (−1)(a1−1)(b1−1)/4
(a1

2
)β(b1

2
)α
.

From this theorem, we know that the Hilbert symbol is bilinear on F2-vector
space K∗/K∗2.

Proposition 4.3. Let q(x, y, z) = ax2 + by2 + cz2 be a nondegenerate quadratic
form in three variables with coefficients in Qp(including p = ∞). Set ε = ε(q) =
(a, b)(b, c)(a, c), and let d = d(q) = abc be the discriminant of q. Then q represents
0 in Qp if and only if (−1,−d) = ε.

Proof. The form q represents 0 if and only if the form −cq does, hence if and
only if −acx2 − bcy2 = z2 has a nontrivial solution, in other words by definition
(−ac,−bc) = 1. By bilinearity this condition is

1 = (−ac,−bc) = (−1,−1)(−1, a)(−1, b)(a, b)(a, c)(b, c)(c, c),

and since (c, c) = (−1, c), this can be written (−1,−abc) = (a, b)(b, c)(a, c), proving
the proposition. �

Corollary 4.1. Let c ∈ Q∗p, and let q(x, y) = ax2 + by2 be a nondegenerate
quadratic form in two variables. Then q represents c in Qp if and only if (c,−ab) =
(a, b).

Proof. Use above proposition. �

5. quadratic forms over Qp

We define a second invariant. Up to equivalence, we can assume that q is in
diagonal form as q(x) =

∑
1≤i≤n aix

2
i , and we set

ε((a1, · · · , an)) =
∏

1≤i,j≤n

(ai, aj),

where (ai, aj) is the Hilbert symbol. We have the following theorem.

Theorem 5.1. The value of ε((a1, · · · , an)) is independent of the linear change of
variables that transforms q into diagonal form, hence is an invariant of the quadratic
form itself, which we will denote by ε(q).

It follows from this theorem that just as for the discriminant d(q), ε(q) is an
invariant of the equivalence class of q.

Theorem 5.2. Let q be a nondegenerate quadratic form in n variables, and set
d = d(q), and ε = ε(q). Then q represents 0 nontrivially in Qp if and only if one of
the following holds:
(1) n = 2 and d = −1.
(2) n = 3 and (−1,−d) = ε.
(3) n = 4 and either d 6= 1, or d = 1 and (−1,−d) = ε.
(4) n ≥ 5.
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Corollary 5.1. Let c ∈ Q∗p/Q∗2p . A nondegenerate form q in n variables with
invariants d and ε represents c if and only if one of the following holds:
(1) n = 1 and c = d.
(2) n = 2 and (c,−d) = ε.
(3) n = 3 and either c 6= −d or c = −d and (−1,−d) = ε.
(4) n ≥ 4.

Corollary 5.2. Two quadratic forms over Qp are equivalent if and only if they
have the same rank, discriminant, and invariant ε(q).

6. quadratic forms over Q

Theorem 6.1. If a and b are in Q∗ then (a, b)v = 1 for almost all v ∈ P , and we
have the product formula ∏

v∈P
(a, b)v = 1.

Proof. Use Theorem 4.1. �

Theorem 6.2. Let (ai)i∈I be a finite set of elements of Q∗ and let (εi,v)i∈I,v∈P be
a set of numbers equal to ±1. There exists x ∈ Q∗ such that (ai, x) = εi,v for all
i ∈ I and all v ∈ P if and only if the following three conditions are satisfied:
(1) Almost all of the εi,v are equal to 1.
(2) For all i ∈ I we have

∏
v∈P εi,v = 1.

(3) For all v ∈ P there exists xv ∈ Q∗v such that (ai, xv)v = εi,v for all i ∈ I.

Theorem 6.3. (Hasse-Minkowski Theorem for n ≤ 2)

Lemma 6.1. Over any field K of characteristic diffferent from 2 the form ax2 +
bxy + cy2 represents 0 nontrivially if and only if b2 − 4ac is a square in K.

Proof. Use the identity (2ax+ by)2 − y2(b2 − 4ac) = 4a(ax2 + bxy + cy2). �

Since q represents 0 nontrivially in R, we must have d ≥ 0. If d = 0 then q is a
square of a linear form hence represents 0 nontrivially. If d > 0 then let d =

∏
i p
vi
i

be the prime power decomposition of d. Since q represents 0 nontrivially in every
Qp, by above lemma d is a square in Qp. This implies that vpi

(d) = vi is even for
all i, hence that d is a square.

Theorem 6.4. (Hasse-Minkowski Theorem for n = 3)

Proof. We may assume that our quadratic form is a diagonal form q(x, y, z) =
ax2 + by2 + cz2. If one of the coefficients is 0 then q has a nontrivial zero in Q
by the case n = 2. Thus we may assume abc 6= 0. Furthermore, we may assume
that q(x, y, z) = x2 − ay2 − bz2 with a, b square-free integers, where we assume
|a| ≤ |b|. We prove the theorem by induction on m = |a| + |b|. If m = 2 then
q(x, y, z) = x2 ± y2 ± z2, and since the case x2 + y2 + z2 is excluded since q
represents 0 in R, in other cases the form represents 0.
Thus assume now that m > 2, in other words |b| ≥ 2, and let b = ±

∏
1≤i≤k pi be

the prime factorization of the square-free number b. Let p = pi for some i. We claim
that a is a square modulo p. This is trivial if a ≡ 0 (mod p). Otherwise a is a p-adic
unit, and by assumption there exists a nontrivial p-adic solution to ay2 + bz2 = x2,
where x, y, z ∈ Zp, and at least one in Up. Thus x2 ≡ ay2(mod pZp). Now y is a
p-adic unit. It follows that a ≡ (x/y)2 (mod pZp), so a is a square modulo p. Since
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this is true for all p|b, by the Chinese remainder theorem this implies that a is a
square modulo b, in other words that there exist b′ and k such that k2 = a + bb′,
where k may be chosen such that |k| ≤ |b|/2. Since bb′ = k2 − a, bb′ is a norm
in the extension K(

√
a)/K, where K = Q or any Qv. Thus, q represents 0 in K

if and only if the same is true for q′(x, y, z) = x2 − ay2 − b′z2. In particular, by
assumption q′ represents 0 in all the Qv. But since |b| ≥ 2 and |a| ≤ |b|, we have

|b′| =
∣∣∣∣k2 − a

b

∣∣∣∣ ≤ |b|4 + 1 < |b|.

Thus we may apply our induction hypothesis to the form q′(more precisely to the
form q′′, where b′ is replaced by its square-free part);hence q′ represents 0 in Q,
and so the same is true for the form q. �

Theorem 6.5. (Hasse-Minkowski Theorem for n = 4)

Before the proof in this case, we slightly strengthen the case n = 3.

Proposition 6.1. Let q(x, y, z) be a quadratic form in three variables, and assume
that q(x, y, z) = 0 has a nontrivial solution in every completion of Q except perhaps
in one. Then it has a nontrivial solution in Q, hence in all places.

Proof. Assume q(x, y, z) = ax2 + by2 + cz2. By Proposition 4.3, q represents 0 in
Qv if and only if

(−1,−abc)v = (a, b)v(b, c)v(a, c)v.
By assumption this is true for all v except perhaps one. Since both sides satisfy the
product formula(Theorem 6.1), it follows that this equality is true for all v; by 4.3
again, q represents 0 in Qv for all v. Hence by the proof of case n = 3, q represents
0 in Q. �

Proof. We may assume that q = a1x
2
1 + a2x

2
2 − a3x

2
3 − a4x

2
4. Let v be a place of Q.

Since q represents 0 in Qv, an application of Theorem 2.2 shows that there exists
cv ∈ Q∗v that is represented both by a1x

2
1 +a2x

2
2 and by a3x

2
3 +a4x

2
4, and Corollary

4.1 implies that for all v we have

(cv,−a1a2)v = (a1, a2)v and (cv,−a3a4)v = (a3, a4)v.

By the product formula for the Hilbert symbol, we deduce from Theorem 6.2 that
there exists c ∈ Q∗ such that for all places v,

(c,−a1a2)v = (a1, a2)v and (c,−a3a4)v = (a3, a4)v.

The form a1x
2
1 +a2x

2
2− cx2

0 thus represents 0 in each Qv, hence by the proof of the
case n = 3 also in Q, so c is represented by a1x

2
1 + a2x

2
2. Similarly c is represented

by a3x
2
3 + a4x

2
4, so q represents 0. �

Theorem 6.6. (Hasse-Minkowski Theorem for n ≥ 5)

Proof. Write Q = Q1 −Q2 where

Q1(x1, x2) = a1x
2
1 + a2x

2
2

and
Q2(x3, · · · , xn) = −a3x

2
3 − · · · − anx2

n.

Let S be the set consisting of v = 2, v = ∞ and v such that not every ai ∈ Z∗v
for i ≥ 3. For all v ∈ S, Q1 and Q2 represent some common nonzero αv over Qv

since Q represents 0 over Qv. The set of nonzero squares Q∗2v is open so the coset
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of Q∗2v containing αv is an open set. The quadratic form Q1 is continuous so the
inverse image of the coset containing αv is an open set Av in Qv × Qv. By the
approximation theorem there are x1, x2 ∈ Q such that (x1, x2) ∈ Av for all v ∈ S.
Thus a := Q1(x1, x2) is in Q and a/αv ∈ Q∗2v for all v ∈ S. Consider the quadratic
form Q′ = at2−Q2. There is a nontrivial solution to Q′ = 0 over every Qv for v ∈ S
since a/αv ∈ Q∗2v for all v ∈ S. Furthermore, the equation Q′ = 0 has a nontrivial
solution over every Qv where v is not in S since char(Qv) 6= 2 and n − 2 ≥ 3. So
there is a nontrivial solution to Q′ = 0 over Q by the induction hypothesis since Q′

is an (n − 1)-dimensional quadratic form. This means the equation Q2 = a has a
solution over Q. We now have solutions over Q to Q1 = a and Q2 = a so

Q = Q1 −Q2 = 0

has a nontrivial solution over Q. �
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