225A DIFFERENTIAL TOPOLOGY FINAL

KIM, SUNGJIN

Problem 1.

From Whitney’s Embedding Theorem, we can assume that N is an embedded
submanifold of R¥ for some K > 0. Then it is possible to define distance function.
Now we use e-Neighborhood Theorem. There exists an open neighborhood

U=M"= |J{weN:|w-y| <cy)}
yeEM

where ¢ : M — R is a smooth positive function on M, and = : U — M is a
submersion defined by m(w) being the unique closest point from w to M. Then,
we claim that the inclusion ¢ : M — U is proper. For, let K C U be a compact set
in U. We have compactness of 7(K) by continuity of 7, and

i"1(K) = KNM C n(K) is a closed subset of a compact set, thus i~!(K) is
compact. Hence, ¢ : M — U is proper.

Problem 2.

First, we remark that M(n,p;k+), the set of matrices in M (n,p) whose rank
is at least k, is an open subset of M (n,p). This can be shown by considering the
function f : M(n,p) — R given by:

JA) = 3 (detB)

BeAgxk

where Ay is the set of all k x k submatrices of A. Indeed, M(n,p;k+) = {4 €
M(n,p)|f(A) > 0}, and the continuity of f gives the result.

Define the sets of matrices M (n,p; k)1, and M(n,p;k+)1, whose determinant of
the first k& x k submatrix is nonzero. These sets form an open subset of M (n, p; k),
and M (n,p; k+) respectively, by the continuity of determinant. We claim that
M(n,p;k)1 is a np — (n — k)(p — k) dimensional submanifold of M (n,p;k+);.
Then, the global result will follow from this local result. Now, define a map
g: M(n,p;k+); — RO=R=k) by

g(A) = (detAj)kr1<i<n

k+1<j<p

where A;; is a (k + 1) x (k + 1) submatrix obtained by attaching the column

Qa1j

vector to the right of the first & x k submatrix Ay of A, the row vector
QA

(ai1 --- @) to the bottom, and (a;;) to the right bottom corner, where A =

(@uv)1<u<n- Then, clearly g is a smooth function, and M(n,p;k); = g~*(0). We
1<v<p
1
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claim that 0 € R(*=%)®=F) ig a regular value of g, then the result will follow from
the preimage theorem. To show this, we find the jacobian of g.

0
Jg = (aa detAij> k+1<i<n -

k+1<j<p
1<u<n
1<v<p
For each (¢,7) with k+1<i<n, k+1<j <p, we have
0 detAr #0 fu=id,v=7j
——detA;; = ) ) ]
Oy ifk+1<u<n, k+1<v<p, u#i, v#j.

This shows that the Jg has rank (n — k)(p — k), so 0 is the regular value of g. By
the preimage theorem, M (n,p; k); = g~ 1(0) is a dimM (n,p; k+)1 — (n — k)(p — k)
dimensional submanifold of M (n,p;k+);. Since M (n,p; k+)1 is an open subset of
M (n,p), we have dimM (n, p; k+); = dimM (n,p) = np. Hence, we have the global
result M (n,p; k) is a np — (n — k)(p — k) dimensional submanifold of M (n, p).

Problem 3.

o(Green’s Formula) Let W be a compact domain in R? with smooth boundary

OW = ~. Then,
/fd:c 4 gdy = / (69 - af) dxdy.
~ w \dzr 0Oy

Proof. Let w = fdx 4 gdy, then
dw =df Ndx +dg N\ dy
of , , of 99 4, 4 99
<8 dx +a dy)/\dx—l—(axdx—&-aydy A dy
_of
=%

_ (99 _of
= <6x 8y)alx/\dy.

By the generalized Stokes theorem, we have

/fdx+gdy—/aww—/ dw—/ (aggc—ay>dxdy.

o(Stokes Theorem) Let S be a compact oriedted two-manifold in R? with bound-
ary, and let F' = (f1, fo, f3) be a smooth vector field in a neighborhood of S. Then,

dyAdm+idmAdy
Ox

/ (curlF - )dA = | fiday + fodxs + fadas.
S a8

Proof. Let w = fidx1 + fodxo + f3dxs, then by the similar calculation above, we
have:

dw = gi1dxs N dxs + gadx3 A dxy + gzdzy A dxs,
where

0% 0f _O0f 0fs _0f 0h

8$2 83:3’ g2 = 6&63 (9.%‘1, g3 = 61‘1 (91‘2'
We need a lemma: Let 7 = (n1,ns2,n3) be the outward pointing normal. Then,

dA = nldacg AN d.’£3 + ’IleCEg AN diCl + ngdl’l AN dl’g
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, and
n1dA = dxo N dxs
nodA = dxs N dxq
n3dA = dxi A dxs.
For, the first formula is equivalent to

dA(v,w) = det

STRESOIES

where v,w € T,S, and this is precisely the definition of dA. To prove other equa-
tions, let z € R3. Since v x w = afi for some o € R, we have
(z,7) (v x w, ) = (z,Mya = (z,ail) = (2,0 X w).
By plugging in ey, es, e in place of z, we obtain above three formulae.
Thus, we have
dw = g1dxo A dxg + godrs A dxy + gsdry A dze = (g1, 92, 93) - TdA = (curlﬁ -)dA

By the generalized Stokes theorem, we have

/(cmzﬁ-ﬁ)dA: / dw :/ w= [ fidzy + fodao + fadas.
S S oS oS

o(Divergence Theorem) Let W be a compact domain in R? with smooth bound-
ary, and let F' = (f1, fo, f3) be a smooth vector field on W. Then

/ (divE)dzdydz = / (7t - F)dA.
w ow

Proof. Let w = fidxo A dxs + fodxs A dxy + fsdxy A dxy. Then,

<3f1 + % + 3f3> dr1 ANdzg N dxs = (divﬁ)dxl Adzo N dxs

dw = 8:61 8x2 8953

Now, we use the lemma in the proof of Stokes theorem, we have w = (7 - F )dA. By
the generalized Stokes theorem, we have

/ (divﬁ)dxdydz:/ dw:/ w:/ (7i - F)dA.
w w ow ow
Problem 4.

e Topological and differential structure on G(k,n):
Let P € G(k,n), and denote P the orthogonal complement of P in R™, and let
Up = {W € G(k,n)]W N P+ = (0)}. Let L(P, P+) denote the vector space of
linear maps from P to PL. Define a map ¢p : L(P, P+) — Up by:

A€ L(P,P+)— W = {z + Az|zr € P}.
Then, it follows from the definition of Up, that ¢p is bijective for each P. Now,
we claim that {(Up,¢p")|P € G(k,n)} forms a topological and smooth structure

on G(k,n). We can define a topological structure to be the smallest topology that
makes every ¢p homeomorphism. In particular, we have

{¢p(V)|P € G(k,n),V C L(P, P*) is open}

as a basis for this topology.
It remains to show that if Up N Ug is nonempty, then (;5521 o¢p : qS;l(Up NUg) —
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¢o' (Up NUq) is smooth. For, let W € Up N Uq, and A’ = ¢ o ¢p(A). Then,
we have W = {z + Az|x € P} = {a' + A'2'|2’ € Q}. Let I4 : P — R™ denote
the map Ia(z) = x + Az, and mg : R® — @ the projection onto Q. Note that
mgola: P — @ is an isomorphism. If 2’ € @ then, we can find « € P such that
' + Az’ =z + Az. and mg o I4(x) = 2’. From this, we have
Ax' =1Ia0(ngola) () -2
Now, plugging in the orthonormal basis for @ in place of 2’ gives the smoothness of
(;551 o ¢p. Hence, {(Up,¢p")|P € G(k,n)} defines a smooth structure on G(k,n).
Since L(P, P1) is isomorphic to M (k,n — k) ~ R*=F) it follows that G(k,n) is
k(n — k) dimensional smooth manifold.
e Compactness of G(k,n):
Let O(n) be the group of real n x n orthogonal matrices. We define ¥ : O(n) —
G(k,n) by:
A€ O(n) — span{A',--- , A*} € G(k,n),
where A',--., A*F are the first k& columns of A. We claim that ¥ is continuous.
Without loss of generality, it suffices to show that there exists an open set By C
O(n) containing I with ¢;* o W|p, : By — Uy, — L(Ij, Iy") is continuous at T
where I, = span{I',---  I*}. This follows from the continuity of the determinant
of the first k x k block. Thus, we have proved the claim. Since O(n) is a compact
manifold and ¥ is continuous, we have ¥(O(n)) is compact. By Gram-Schmidt
process, it follows that ¥ is surjective. Hence, G(k,n) is compact manifold.
e G(k,n) is diffeomorphic to G(n — k,n):
Define @ : G(k,n) — G(n — k,n) by ®(P) = P+. Consider the following composi-
tions,

L(P, PL) 225 Glln) 2 G(n — kyn) 225 L(P, P)
AsWe—Wteo Al
If W = {x + Az|z € P}, then we have W+ = {2/ — AT2'|2' € P+}. Thus,
®(A) = A’ = —AT is an isomorphism of L(P, P*) and L(P*, P). Hence, G(k,n)
is diffeomorphic to G(n — k,n).

Problem 5.

We need the following two propositions:
Propositionl: Suppose f: X — Y is transversal to Z. If X = W, W is compact,
f: X > Y extends to F: W — Y, and F is transversal to Z, then I(f, Z) = 0.
Proposition2: Homotopic maps always have the same intersection numbers.

o(i) Under our assumptions, we can extend u: M x N — S" L tov: D x N —
S"~1 defined by:

F(x) = 9(y)
() = g(u)
Since we have (D x N) = (0D) x N = M x N, we can use propositionl with
Z = {y} C S"~L. Hence, by propositionl, I(u,{y}) = deg(u) = L(f,g) = 0.
o(ii) Let f;, g+ be homotopy of fp, and gg respectively. In addition, suppose we
have im(f;) does not intersect im(g;) for each t € [0,1]. Then,
fe(@) — g:(y)

Uy =

(@) = gl

v(z,y) =
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is a homotopy of ug. Hence, by proposition2, we have L(f1,91) = I(u1,{y}) =
I(UOa {y}) = L(angO)'

Problem 6.

o(i)

o(ii)

o(iii)
Problem 7.

e (I) We claim that there exists a natural orientation on some neighborhood of

the diagonal A in X x X.
Proof. We can cover a neighborhood of A by local parametrizations ¢ x ¢ : U xU —
X x X, where ¢ : U — X is a local parametrization of X. We can give a product
orientation on X x X by the orientation of ¢ x ¢, and this does not depend on a
specific choice of orientation of X.

e (II) Let Z be a compact submanifold of Y, both oriented, with dimZ = dimY .
We have [(Z,7) = I(Z x Z,A), where A is the diagonal of Y.

Proof. 1(Z,2) = 1(i,Z) = I(i,i) = (=1)%™Z21(i x i,A) = (-=1)4™mZ[(Z x Z,A),
and if dimZ is odd, then I(Z, Z) = (=1)¥™Z[(Z x Z,A) = 0.

e (III) If Z is a compact submanifold of Y with dimZ = 3dimY’, and Z is not
oriented. By (I) we have an open neighborhood Y of the diagonal A in Z x Z. Then,
we have dimZ = 1dimY. We define the Euler Characteristic x(Z) = I(Z x Z,A).
This is well defined, since Y is orientable by (I). Also, this definition fits in orientable
case, by (IT).

Problem 8.

e (I) We claim that if a vector field # on R! has finitely many zeros, and the sum
of the indices of its zeros is 0. Then there exists a vecter field that has no zeros,
yet equals ¥ outside a compact set. To prove this, we need a series of lemmas:

o(1) Let f : U — R¥ be any smooth map defined on an open subset U of R¥, and

let = be a regular point, with f(xz) = z. Let B be a sufficiently small closed ball
centered at z, and define df : 9B — R to be the restriction of f to the boundary
of B. Then W(9f,z) = +1 if f preserves orientation at x and W(9f,z2) = —1if f
reverses orientation at z.
Proof. For simplicity, take x = 0 = 2z, and set A = dfy. By regularity, A is
bijective. Write f(x) = Az +e(x), where e(x)/|z| — 0 as || — 0(This is possible by
multivariable Taylor’s Theorem). Take B small enough that the map F' : 0B x I —
R* defined by F(z,t) = (Az + te(z))/|Ax + te(z)| is a homotopy. Since homotopic
maps have the same intersection numbers, we have W(A,0) = W(9f,0). Here,
W(A,0) = +1 if detA is positive, and —1 otherwise, which is precisely the same
conditions whether f preserves orientation, or otherwise.

o(2) Let f : B — RF be a smooth map defined on some closed ball B in R*.
Suppose that z is a regular value of f that has no preimages on the boundary
sphere on the boundary sphere B, and consider df : 0B — R*. Then the number
of preimages of z, counted with our usual orientation convention, equals the winding
number W (9f, z).

Proof. Circumscribe small balls B; around each preimage points. then the degree
of the directional map u on the boundary of B’ = B — U By is zero(since u extends
to all of B'). i.e. W(flamps,2) =0. Thus, W(df,z) =3, W(flon,, 2), where z are
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the center of B;. By (1), the preimages z; are counted with our usual orientation
convention.

o(3) Let B be a closed ball in R¥, and let f : R¥ — Int(B) — Y be any smooth

map defined outside the open ball Int(B). If the restriction df : 9B — Y is
homotopic to a constant, then f extends to a smooth map defined on all of R* into
Y.
Proof. Assume B is centered at 0, let g; : 9B — Y be homotopy with g = df,
go = const. Then a continuous extension of f through B is given by f(tx) = g:(z),
x € OB and t € [0,1]. To extend smoothly, we use the smooth function p: R — R
with p(t) = 01if t < 1/4, and p(t) =1 if t > 3/4.

o(4) Let f:R* — R* be a smooth map with 0 as a regular value. Suppose that
F71(0) is finite and the number of preimage points in f~1(0) is zero when counted
with the usual orientation convention. Assuming the special case in dimension k—1,
there exists a mapping g : R¥ — R¥ — {0} such that g = f outside a compact set.
Proof. 1 =1 is a trivial case, for [ > 1, we use induction. Take a large ball B
around the origin that contains all of f~1(0). (2) implies that 9f : 9B — R* — {0}
has winding number zero. The inductive hypothesis(Any smooth map f : S —
R+ — {0} having winding number 0 with respect to the origin is homotopic to
a constant, here [ = k — 1) implies that 9f : 9B — R* — {0} is homotopic to a
constant. By (3), f can be extended to all B. We can use this extended f to prove
the case [ = k.

o(Proof of the claim) Use f = v in (4).

e (IT) We also claim that any compact manifold X there exists a vector field

with only finitely many zeros.
Proof. Assume that X C R¥  and let T(X) be its tangent bundle. Define p :
X x RN — T(X) by making p(x,v) be the orthogonal projection of the vector
v into T,(X). Then p is a submersion since it is a projection. We apply the
Transversality Theorem with S = RV, Y = T(X), and Z = X x {0}. For some v,
the vector field x — p(x,v) is transversal to X x {0}. Thus, its inverse image of
X x {0} is 0 dimensional submanifold of X. Since X is compact, it follows that
this preimage is finite.

e (IIT) We use a varient of isotopy lemma(Given points y; and z;,i = 1,--- ,n
in a connected manifold Y, we can find a diffeomorphism h : Y — Y isotopic to
identity, with h(y;) = 2; for i = 1,---n), to pull the vector field back to RY. Here,
we require an additional condition that the finitely many zeros of the vector field
are all contained in an open set U. Then, we use (I) to obtain a vector field without
Zero.

e (IV) Now, we construct an isotopy of identity without fixed points using the
nonvanishing vector field on M. To do this, we use a theorem about the flow of a
given vector field.

Theorem 1.

Let X be a smooth vector field on a smooth manifold M. For each m € M there
exists a(m) and b(m) in RU {£o0}, and a smooth curve
Ym ¢ (a(m),b(m)) — M
such that
(a) 0 € (a(m),b(m)) and ~,,(0) = m.
(b) v, is an integral curve of X.
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(¢) (a(m),b(m)) is maximal that ~,, can be extended.
(d) For each m € M, there exists an open neighborhood V of m and an € > 0 such
that the map

(t,p) = Xi(p)
is defined and is smooth from (—¢,¢) x V into M.
(e) Let Dy = {m € M|t € (a(m),b(m))}, then D, is open for each ¢.
(f) Ut>0Dt = M
(g) Let X¢(m) = v (¢), then X; : Dy — D_, is a diffeomorphism with inverse X _;.
Since M is compact in our case, we can find some t5 > 0 such that M = D,,, and
X has no fixed points for each ¢ < to. Hence, we have Xy /5 is the desired isotopy
of identity without fixed points(We have X, = id).



