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Probleml. _
(a) Define ¢ : F — F by
iv :F(U) — F(U)
P <iU(a) U — Tot.7-'> .

T Ay
Remark that iy (a) : U — TotF is a continuous section. Let U, C Uy C X be open
subsets of X. Consider the below diagram:

iU, ~

F(Us) F(Us)
F(luyuy) = F(luguy)
F(Uy) - F(U)

Then for a € F(Us), we have F(ly,u,) o iy, (a)(z) = ap for z € U;. On the other
hand, iy, o F(1ly,u, )(a)(z) = (al|v,), for x € Uy. Indeed, the definition of stalks
gives a, = (a|y,),. Hence, the diagram commutes and 4 is a natural morphism of

presheaves i : F — F.

(b) <) This part is obvious, since F is a sheaf.

=) Suppose that F is a sheaf. We want to find j : F — F with joti =1z, and
i0j = 1z. For any continuous section s of p and any open set U C X, we have an
open cover of U,

(1) v=|J U

a€F(U)

where U, = 57! ({az|z € U}). We claim that there exist j(s) € F(U) such that
j(s)|lu, = a for each a € F(U). In fact, v € U, (U, implies a, = b,. From
SHEAF(2), we obtain a|y, nv, = blu,nv,, and hence we obtain the existence
of j(s) such that j(s)|y, = a by SHEAF(3). Furthermore, this j(s) is uniquely
determined by SHEAF(2).

Now, we show that joi = 1. Let U C X be open, and a € F(U). From
i(a)~' ({az|lx € U}) = U, we obtain ji(a) = a. It remains to show that i0j = 1.
We use the open cover of U = |JU, again. For s € F(U), s(z) = a, for z € U,.
Definition of ¢ in (a) implies ij(s)(z) = j($)x = a, = s(x). Hence, now SHEAF(2)
implies that ij(s) = s.
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(c) (Existence) We use (b) on G to obtain an isomorphism ic : G — G, then it
suffices to find ;' : F — G such that ig;' o j/ 0i = j. Define j' : F — G by
Jv  F(U) — G(U)
s:U — TotF N 7n(s) .U — TotG
!IJ'—>[U,G]E,7:I x'_)[Uaj(a)]egI .
Then, the diagram

~7'-(U2) 4 - §(U2)
FU) i - G(Uh)

commutes where Uy C Uy C X. Let 3: ic_;l o}’.

(Uniqueness) Let U C X be open. We use the open cover in (1) in (b) again,
U = JU,. For any s € F(U), we have i(a|y,) = s|y,. The condition j oi = j
forces j(s|y,) = j(s)|v, = j(aly,). Hence by SHEAF(2), j(s) is uniquely deter-
mined.

Problem?2.

(a) SHEAF(1): G(¢) = {¢} is a final object in the category SETS.

SHEAF(2): Let U = |JU, be an open cover. Let a,b € G(U) with a|y, = b|y, for
all . For any = € U, there is some « such that z € U,. Since a|y, = by, , we have

a(z) = alu, (z) = blu, () = b(z).

Hence, a = b.
SHEAF(3): Let U = |JU, be an open cover. Let a, € G(U,) satisfy

aalu. nus = aplu.nus
for any a, 8. We define a € G(U) by
a(r) = aa(x)
where x € U,. Then we have a|y, = aq.
(b) The natural morphism 4 : F — G is defined by
iv :FU)=A— G(U)
a€A— <iU(a>:U_>A>.

T a

Recall from Problem1 (a) that i : 7 — F is defined by
iy :F(U) — F(U)

0 (iU(a) U — Tot}:) .

T Qg
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We show that these morphisms are isomorphic by showing that
f:6(U) — F(U)

(5:U — A) 1o <s:U—>Tot.7:>

x— 8(x)y
is an isomorphism of sets.
(f is injective) Suppose si(x) # sa(x) for some z € U, then s1(z)|, # s2(z)|s.
Thus, f(s1) # f(s2)-
(f is surjective) Let § : U — TotF be a continuous section. For each x € U, define
s(z) € A by 5(x) = s(z)|g. Then, for fixed a € A, we have

{z €eUls(z) =a} ={x € Uls(x) € {az|x € U}}.
The RHS is an open set since § is continuous, thus LHS is also an open set in U.

Since this is true for all @ € A, we conclude that s is continuous and f(s) = 3.
Hence the natural morphism i : 7 — G is isomorphic to i : F — F.

Problem3.

Let P be a nonzero prime ideal in A = Z[X]. Then the natural homomorphism
Z — A/P has kernel P N Z. This gives an embedding of Z/(PNZ) into A/P.
Since A/P is an integral domain, so is Z/(P NZ). Thus, we have two cases

PA7— pZ  for some prime p € Z
(0)

(Casel) PN Z = pZ for some prime p € Z:
By 3rd isomorphism theorem, we have

AP~ (Z/pZ[X]) /(P/pZ[X]).
In fact Z/pZ[X] = F,[X], and the LHS is an integral domain. It follows that
P/pZ[X] is a prime ideal in F,[X]. Since F,[X] is UFD, P/pZ[X] = (f(X)) for
some f(X) € F,[X] irreducible polynomial of degree > 1 or P/pZ[X] = (0). Hence,
in this case, we obtain P = (p, f(X)) or P = pZ[X] where f is irreducible mod p.
(Case2) PNZ = (0):
Consider the ideal PQ[X] C Q[X], this is a proper prime ideal in Q[X]. So,
PQ[X] = f(X)Q[X] where f is irreducible over Q. Further, we can assume that
the polynomial f is primitive. We claim that P = f(X)Z[X]. Suppose h € P,
h = fg for some g € Q[X]. Taking content(Gauss lemma) on each side, we obtain
g € Z[X]. Hence it follows that P = f(X)Z[X].
Now, we can write the result as follows:
Prime ideals P in Z[X] are one of the following forms:

(0),

(f(X)) for f € Z[X] irreducible and primitive,

(p) for some prime p € Z,

(p, f(X)) for some prime p € Z, and f is irreducible mod p.

Now, we characterize the topology on Spec(Z[X]). Let I C Z[X] be a proper ideal.
Consider I NZ = nZ, we have two cases,
(Casel) I NZ = nZ with n # 0, £1:
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Let p € V(I), i.e. p is a prime ideal containing I. Then p NZ = pZ for some prime
p|n. Fix a prime p|n. The ideal I + pZ[X] C Z[X] maps to some ideal (f(X)) C
F,[X] by reducing mod p, since F,[X] is a PID. Let f; be distinct irreducible factors
of finF,[X] if deg(f)> 0, and enumeration of all irreducible polynomials of F,[X]
with 0 if f = 0. Thus, we have (f(X)) C (fi(X)) C F,[X] for each i. Pulling back
these ideals to Z[X], we obtain I C I + pZ[X] C (p, fi(X)) C Z[X] for each i.
Hence, the result

V() = {(p, fp.i) | pln, (I + pZIX])/(pZ[X]) = (fp(X)) C Fp[X], deg(fp) > 0, fp.: are
distinct irreducible factor of f in F,[X]}
U{(p, Ip.i) | pln, (I +pZ[X])/(pZ[X]) = (0) C Fp[X], fp; are enumeration of
all irreducible polynomials of F,[X] with 0}.
(Case2) INZ = (0):
Consider IQ[X] = (f(X)) € Q[X] with f being primitive. Then we obtain I =
f(X)Z[X] by Gauss lemma. Let f; be distinct irreducible factors of f, and 7; € C
be the corresponding roots of f;. For each i, we need to find primes p such that

(p, fi) become proper. To do this, we use Gauss lemma again so that we obtain the
result:

(b, £ s proper =~ ¢ Zir).
Hence, we have,
V) = {0 fi3) | £1Fs 5 & ZIL () + pEIXD/GELX)) = (£(X) mod p) € F,[X],
deg(f; mod p) > 0, f; ; are distinct irreducible factor of f; in F,[X]}
(L)l fil f irreducible}.

Problem4.

Let X =Y = SpecC, S = SpecR. They are all affine schemes. Also, C can be
regarded as R-algebra. Then Z = Spec(C ®g C) is the desired pull-back of the
diagram,

VA > SpecC

SpecC > SpecR
Since C ®g C is isomorphic to C x C as rings, we have Z = Spec(C x C). Hence,
we obtain the result

Z = SpecC xgpecr SpecC = {C x {0}, {0} x C}.

Problem6.

<) Suppose first that A has a nontrivial idempotent a. Then, we claim that
A=aA®(1—-a)A. Foranyz € A,z =ar+ (1 —a)x,s0 A=aA+ (1 —a)A. If
y€aAN(l—a)A, then ay € a(l —a)A =0, and (1 —a)y € (1 —a)aA = 0. Thus,
y=0and A=aA @ (1—a)A.
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Now, we have V(aA) NV ((1 —a)A) = V(aA+ (1 — a)A) = V(A) = 0, and
V(@A)UV((1—-a)A) =V(eAN(1—-a)A) = V((0)) = Spec(A). Hence, Spec(A)
is covered by disjoint union of nonempty closed sets V(aA) and V((1 — a)A), i.e.
Spec(A4) is disconnected.

=) Suppose that Spec(A) is disconnected, i.e. Spec(A) =V (J1) UV (J2), V(J1)N
V(J2) = 0 for some ideals Jyi, Jo C A, and V(J1) # 0, V(J2) # 0. If I, J are radical
ideals, then we have V (I) = V(J) <= I = J. Take I, = v/J; and Iy = \/Jo. Then,
we obtain I; +Is = Aand I; NI, = \/@ Also, we know that I, I are proper.
Thus, we can find a € I, b € I such that a+b = 1. However ab € I; 15 = 1/(0), so
we see that (ab)”™ = 0 for some n > 1. Using (a+b)?>" = 1, we obtain a” A+b" A = A.
Let o’ € a™A, and V/ € b"A with o/ + b = 1. Then, o’ is the desired nontrivial
idempotent, since a’ = a/(a’ +b') = a’> + a’t’ = a'? implies a’? = d'.

Problem?.
Remark that f(P) is the image of f in the residue field Ap/(PAp) where Ap is
the localization. We claim that f(P) =0 if and only if f € P. We see that

f(P) =0 <= There exists s € S = A — P such that fs/s € PAp
<= There exists s',s” € S and p € P such that (p — fs')ss” =0
— fepP

, since s'ss” ¢ P. Hence, the set {P € Spec(A)| f(P) = 0} is just V(fA), so it is
closed.

Problems8.
Take A = Z[X], and U = D(2) U D(z) = Spec(4) — (V(24) NV (zA)). Suppose
U = D(a) for some a € A. Then,

U = D(a) <= Spec(A) — V(aA) = Spec(4) — V((2,2))
— V(aA) =V ((2,z)) = {(2,2)}.

, since (2,z) is maximal ideal. Thus, for a prime ideal p € Spec(A), we have
p D aA < p=(2,z). Suppose deg(a) > 0, then we can find an irreducible factor
b € A of a. Further, as in problem3, we can find a prime number p € Z such that
(p,b) is proper. Then, we obtain V(aA4) D {(b), m}, where m is a maximal ideal that
contains (p,b), and this is a contradiction to V(aA) = {(2,z)}. Now, we assume
that a € Z. Our assumption implies that a cannot be unit or zero. Then, there
is a prime number p € Z such that V(aA) D {(p), (p,z)}. This again contradicts
V(aA) = {(2,z)}. Hence U = D(a) is impossible for any a € A.

Problem9.

First, consider M orgings(Z,Q) = {i : Z — Q}, and Morropspaces (SpecQ, SpecZ) =
{f : SpecQ — SpecZ| f is continuous}. We have only one point in Morgings(Z,Q),
but Morrepspaces(SpecQ, SpecZ) contains infinitely many points, since it contains
fp:(0) CQ— pZ C Z for all prime p € Z. Thus, the functor Spec(—) is not full.

Then we consider Mor gings(C,C) D {4, c}, where i is identity, ¢ is complex conju-
gation. Also, consider Morropspaces(SpecC, SpecC) = {ig}, where iy : (0) C C —
(0) ¢ C. We have at least two points in Morgings(C,C), but we have only one
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point in Morrepspaces (SpecC, SpecC). Hence, the functor Spec(—) is not faithful.

Problem12.

SHEAF(1): F(¢) = {¢} is a final object in the category SETS.

SHEAF(2): Let U = |JU, be an open cover. Let a,b € F(U) with a|y, = b|y,, for
all . For any z € U, there is some « such that z € U,,. Since a|y, = b|y,,, we have

a(z) = aly, (x) = blu, () = b(z).
Hence, a = b.
SHEAF(3): Let U = |JU, be an open cover. Let a, € F(U,) satisfy

talv, vy = aglu,nus

for any «, 8. We define a € F(U) by
a(r) = aa(x)

where € U,. Then we have a|y, = aq.
Thus, F is a sheaf.
We claim that (X,F) is a scheme. First, consider F, = {[U,a]lz € U Copen
X,a € F(U)}. Since X is a discrete topological space, we can further show that
Fr = {[{z},a]la € F({x})} ~ k. This shows that (X,F) is a local ringed space.
For any z € X, U = {z}, we have ({x}, F|{s1) =~ (Speck,O). This proves our
claim.
Suppose that (X, F) ~ (SpecA,O4). For any p € SpecA, (O4), = Ap = k. Since
A, is a local ring with a unique maximal ideal pA, and £ is a field, we must have
p = 0. Thus, SpecA = {0}, and A cannot have nonunit element, otherwise SpecA
would contain nonzero maximal ideal of A. It follows that A is a field, and (X, F)
is affine if and only if X is a singleton set.

Problem13.

(a) We remark that for any f € K, there is n € N such that f € k(Xy, -+, X,).
So, there is n € N such that a(f) = (a1, a9, --) with a; = 0 for ¢ > n. Also, for
any f,g € K —{0}, we have a(fg) = a(f) +a(g), a(f +g) = min(a(f), a(g)), where
the addition is componentwise. Then, it follows that {f € Kla(f) = 0} is the set
of units in A and {f € Kla(f) > 0} forms the ideal of all nonunits in A. Further,
we obtain that if a(f) = (a1,a2,- -+ ,ap,0,0,---), then f = uX{* X5?--- X for
some unit v € A. Now, we claim that Q := >, XA = {f € Kla(f) > 0}.
The inclusion D is clear. To prove C, let f = Xifo + -+ + X, fm. Then,
a(f) > min(a(X1f1), - ,a(Xmfm)) > 0. Hence, the claim is proved and @ is
the unique maximal ideal of A.

(b) The inclusion P; C P;yq is clear for all ¢ > 1. Also, P, C @ is obvious,
since Q@ = {f € Ala(f) > 0}. To show that P; is a prime ideal in A, let f,g €
A — P;. Then, for some b(f)i+1,b(f)it2, -+, and b(g)i+1,b(g)ive, -, we have
a(f) < (07 0, b(f)i-‘rla b(f)i+2a e )a and a(g) < (07 -0, b(g)i+17b(g)i+Qa e )
Adding these up, we obtain

a(fg) =a(f) +alg) < (0,--,0,b(f)i+1 + b(g)i+1,0(f)it2 + b(g)it2, ).
This implies fg € A — P;. Hence, P; is a prime ideal in A. Furthermore, the same
argument as in (a) shows that P, =, X;A.
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(c) Let P be a prime ideal in A. Let f € P — {0}, and f = uX7{'--- X2 for some
unit w € A. Since P is a prime ideal, we can find 7 < n such that X; € P. Define a
set B = {i € N|X; € P}. We divide into two cases:
(Casel) B is infinite:
We can show that P contains all X,, from the formula(*),
X+ X;

&Z&J%J—&
for i < j. Hence, we obtain P = Q.
(Case2) B is finite:
By the formula(*), there exists n € N such that B = {i € N|1 < ¢ < n}. Hence, it
follows that P =37, X;A=P,.
We proved that SpecA = {0,Q, P1, Py,--- , Py, }.
The Zariski topology 7 on SpecA is T = {0} U {V(p)|p € SpecA}. To prove
this, let I be a proper ideal in A. Then, consider m = min{n € N|I C P,}. If
m € N, then, V(I) = V(P,,). If m = oo, then V(I) = V(Q) = {Q}. In fact,
V(P,) ={Q, Py, Pyy1,- -} for each n > 1.

(d) The topology on SpecA — {Q} is the subspace topology
T'={0} u{V(p) — {Q}lp € SpecA}.
For each point P, € SpecA — {Q}, we have {P,} = V(P,) — {Q} # {P.}. For

0 € SpecA — {Q}, {0} = V(0) — {Q} # {0}. Hence, the scheme SpecA — {Q} has
no closed points.

Problem14.

Asamap of topological spaces, it is clear that X Ly factors through X ER UL Y,

where U 5 Y is the inclusion. Let f(z) =y, we have composition of morphisms

of schemes (X, ]-') (U,Gly) = (Y,G). This induces morphisms of local rings
2, — (Glu)y — Fu, since y € U. Further we know that the ring homomorphism

Qy — F, is a local. Thus, G, ~ (Q|U) — F, is a composition of local ring
homomorphisms. Hence the morphism of schemes f factors through X — U and
U=Y.

Problem16.

Let (X,Ox) 4, (SpecZ, Oz) be a morphism of schemes, and let f(z) = y. Then,
we have a local ring homomorphism Oz, — Ox . We have two cases,

(Casel) y = 0:

Since Oz, = Zy)y — Ox s is local, Oz = Zg) = Q — Ox . /mx , = k(x) where
mx . is the unique maximal ideal of Ox . Thus, characteristic of k(z) is 0.
(Case2) y = pZ:

Ozp2 = ZLp) — Ox . Since the homomorphism is local, we have Z,) /pZ(p) —
Oxz/mx o = k(z). Since Z,) /pZp) = Z/PZ, we have Z/pZ — Ox o /mx . = k(x)
Thus, characteristic of k(z) is p.

Hence, in either case, we have f(z) = pZ, where p is the characteristic of the residue
field k(x).

Problem19.



8 KIM, SUNGJIN

We remark that the scheme structure on ProjS is given as follows. For each
p € ProjS, we consider the ring S(,) of degree zero in the localized ring T-18,
where T is the multiplicative system consisting of all homogeneous elements of S
which are not in p. For any open subset U C ProjS, we define O(U) to be the set of
functions s : U — [] S(,) such that for each p € U, s(p) € S(p), and such that: for
each p € U, there exists a neighborhood V of p in U, and homogeneous elements
a, f in S, of the same degree, such that for all g € V, f ¢ q, and s(q) = a/f in S(q).
This O is a sheaf and (ProjS, O) is a scheme. Furthermore, for any p € ProjS, the
stalk Oy is isomorphic to the local ring S(;).

We define f : (ProjS,0) — (SpecSp, Og,) by p € ProjS — f(p) = q = pn Sy,
and for basic open set D(a) C SpecSy, define f%(a) 0 Og,(D(a)) = (So)a —
O(f~(D(a))) by:

o) (50)a — O(f7(D(a)))

yam o (P ®/a™) s 571 (D@) — 1150
q—b/a™

This f* induces a ring homomorphism of stalks(local rings):

1
(Oso)a = (So)a = Op = Sty

b/f—b/f.

Since, ¢ = p N Sy, this fc’f is a local ring homomorphism. Hence, we conclude that
(f, f*) : (ProjS, ©) — (SpecSy, Og, ) is a natural morphism of schemes.

Problem?20.
Let I € A be a homogeneous ideal, and let I; C I be the set of all homogeneous
elements in I having degree d. Then, we have

Iz@fd.

d>0
Furthermore, any ideal I satisfying this property is homogeneous. To show that
I is homogeneous, consider a € I. By definition of I, there is m > 0 such that
at?™ € I for all 0 < i < n. Write a = ) 4>0 @d; Where ag4 is homogeneous element
of degree d. Then, aqt* € I since at™ = 3" o, aqt?™ € I with agt™ having degree
d + m, homogencous. Since this holds for every 0 < i < n, we see that ag € I for
every d > 0. Hence, I is homogeneous.

Problem?21.
Define V(I) = {p € ProjA|I C p}.

=) It suffices to show that I and I define the same closed subschemes of ProjA.
First, we show the set-theoretic equality V(I) = V(I). It is clear that V(1) D V(I),
since I C I. Let p € V(I) and @ € I. We claim that a € p. By definition of I,
we have some m > 0 such that at?™ € I for all 0 < ¢ < n. Suppose a ¢ p, then
we must have ¢ € p for all i. This forces that the ideal (tg,--- ,t,) is contained
in p. Since p € ProjA, p cannot contain (tg,- - ,t,). Thus, we proved our claim,
namely, V(I) C V(I). Hence, V(I) = V(I) follows.
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Now, we need to show that V(I) ~ Proj(A/I) and V(I) ~ Proj(A/I) are isomor-
phic as schemes. For, we consider the canonical surjection A/I — A/I given by
a — a. This induces a surjection of localized rings (A/I)y — (A/I)(s) which
associates a/f" to a/f" for homogeneous a, f with deg f > 0 and deg a = rdeg f.
It will be enough to show that this map is also injective. But if a/f" = 0, then
f™a € I. There is an integer N such that )Y f™a,--- ,tN f™a € I and for k large
enough fFa € I, soa/f" =0in (A/I)).

<) Suppose I,J define the same closed subschemes of ProjA. Then, we have
(A/T)s) =~ (A/J)(y for any homogeneous element f € A via a/f" — a/f". By
the way, a € J if and only if there is m such that at! € J for all i. This means
that a = 0 in (A/J),) for each i. By the isomorphism, we have @ = 0 in (A/1),)
for each i. Again, this is equivalent to at;"* € I for some m,;. Taking maximum of
m;, we obtain that a € I. Hence, a € J < a € I, giving that [ = J.



