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Problem1.
(a) Define i : F −→ F̃ by

iU :F(U) −→ F̃(U)

a 7→
(
iU (a) : U → TotF̃

x 7→ ax

)
.

Remark that iU (a) : U → TotF̃ is a continuous section. Let U1 ⊂ U2 ⊂ X be open
subsets of X. Consider the below diagram:

F(U2)
iU2 - F̃(U2)

=

F(U1)

F(1U2U1 )

?
iU1 - F̃(U1)

F̃(1U2U1 )

?

Then for a ∈ F(U2), we have F̃(1U2U1) ◦ iU2(a)(x) = ax for x ∈ U1. On the other
hand, iU1 ◦ F(1U2U1)(a)(x) = (a|U1)x for x ∈ U1. Indeed, the definition of stalks
gives ax = (a|U1)x. Hence, the diagram commutes and i is a natural morphism of
presheaves i : F → F̃ .

(b) ⇐) This part is obvious, since F̃ is a sheaf.
⇒) Suppose that F is a sheaf. We want to find j : F̃ → F with j ◦ i = 1F , and

i ◦ j = 1F̃ . For any continuous section s of p and any open set U ⊂ X, we have an
open cover of U ,

(1) U =
⋃

a∈F(U)

Ua

where Ua = s−1 ({ax|x ∈ U}). We claim that there exist j(s) ∈ F(U) such that
j(s)|Ua = a for each a ∈ F(U). In fact, x ∈ Ua

⋂
Ub implies ax = bx. From

SHEAF(2), we obtain a|Ua⋂Ub = b|Ua⋂Ub , and hence we obtain the existence
of j(s) such that j(s)|Ua = a by SHEAF(3). Furthermore, this j(s) is uniquely
determined by SHEAF(2).

Now, we show that j ◦ i = 1F . Let U ⊂ X be open, and a ∈ F(U). From
i(a)−1 ({ax|x ∈ U}) = U , we obtain ji(a) = a. It remains to show that i ◦ j = 1F̃ .
We use the open cover of U =

⋃
Ua again. For s ∈ F̃(U), s(x) = ax for x ∈ Ua.

Definition of i in (a) implies ij(s)(x) = j(s)x = ax = s(x). Hence, now SHEAF(2)
implies that ij(s) = s.

1
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(c) (Existence) We use (b) on G to obtain an isomorphism iG : G → G̃, then it
suffices to find j̃′ : F̃ → G̃ such that i−1

G ◦ j̃′ ◦ i = j. Define j̃′ : F̃ −→ G̃ by

j̃′U : F̃(U) −→ G̃(U)(
s : U → TotF̃
x 7→ [U, a] ∈ Fx

)
7→
(

j̃′U (s) : U → TotG̃
x 7→ [U, j(a)] ∈ Gx

)
.

Then, the diagram

F̃(U2)
j̃′ - G̃(U2)

=

F̃(U1)

res

?
j̃′ - G̃(U1)

res

?

commutes where U1 ⊂ U2 ⊂ X. Let j̃ = i−1
G ◦ j̃′.

(Uniqueness) Let U ⊂ X be open. We use the open cover in (1) in (b) again,
U =

⋃
Ua. For any s ∈ F̃(U), we have i(a|Ua) = s|Ua . The condition j̃ ◦ i = j

forces j̃(s|Ua) = j̃(s)|Ua = j(a|Ua). Hence by SHEAF(2), j̃(s) is uniquely deter-
mined.

Problem2.
(a) SHEAF(1): G(φ) = {φ} is a final object in the category SETS.
SHEAF(2): Let U =

⋃
Uα be an open cover. Let a, b ∈ G(U) with a|Uα = b|Uα for

all α. For any x ∈ U , there is some α such that x ∈ Uα. Since a|Uα = b|Uα , we have

a(x) = a|Uα(x) = b|Uα(x) = b(x).

Hence, a = b.
SHEAF(3): Let U =

⋃
Uα be an open cover. Let aα ∈ G(Uα) satisfy

aα|Uα⋂Uβ = aβ |Uα⋂Uβ

for any α, β. We define a ∈ G(U) by

a(x) = aα(x)

where x ∈ Uα. Then we have a|Uα = aα.

(b) The natural morphism i : F → G is defined by

iU :F(U) = A −→ G(U)

a ∈ A 7→
(
iU (a) : U → A

x 7→ a

)
.

Recall from Problem1 (a) that i : F −→ F̃ is defined by

iU :F(U) −→ F̃(U)

a 7→
(
iU (a) : U → TotF̃

x 7→ ax

)
.
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We show that these morphisms are isomorphic by showing that

f : G(U) −→ F̃(U)

(s : U → A) 7→
(
s̃ : U → TotF

x 7→ s(x)x

)
is an isomorphism of sets.
(f is injective) Suppose s1(x) 6= s2(x) for some x ∈ U , then s1(x)|x 6= s2(x)|x.
Thus, f(s1) 6= f(s2).
(f is surjective) Let s̃ : U → TotF be a continuous section. For each x ∈ U , define
s(x) ∈ A by s̃(x) = s(x)|x. Then, for fixed a ∈ A, we have

{x ∈ U |s(x) = a} = {x ∈ U |s̃(x) ∈ {ax|x ∈ U}}.
The RHS is an open set since s̃ is continuous, thus LHS is also an open set in U .
Since this is true for all a ∈ A, we conclude that s is continuous and f(s) = s̃.
Hence the natural morphism i : F → G is isomorphic to i : F → F̃ .

Problem3.
Let P be a nonzero prime ideal in A = Z[X]. Then the natural homomorphism
Z −→ A/P has kernel P ∩ Z. This gives an embedding of Z/(P ∩ Z) into A/P .
Since A/P is an integral domain, so is Z/(P ∩ Z). Thus, we have two cases

P ∩ Z =

{
pZ for some prime p ∈ Z
(0)

(Case1) P ∩ Z = pZ for some prime p ∈ Z:
By 3rd isomorphism theorem, we have

A/P ' (Z/pZ[X]) /(P/pZ[X]).

In fact Z/pZ[X] = Fp[X], and the LHS is an integral domain. It follows that
P/pZ[X] is a prime ideal in Fp[X]. Since Fp[X] is UFD, P/pZ[X] = (f(X)) for
some f(X) ∈ Fp[X] irreducible polynomial of degree ≥ 1 or P/pZ[X] = (0). Hence,
in this case, we obtain P = (p, f(X)) or P = pZ[X] where f is irreducible mod p.
(Case2) P ∩ Z = (0):
Consider the ideal PQ[X] ⊂ Q[X], this is a proper prime ideal in Q[X]. So,
PQ[X] = f(X)Q[X] where f is irreducible over Q. Further, we can assume that
the polynomial f is primitive. We claim that P = f(X)Z[X]. Suppose h ∈ P ,
h = fg for some g ∈ Q[X]. Taking content(Gauss lemma) on each side, we obtain
g ∈ Z[X]. Hence it follows that P = f(X)Z[X].
Now, we can write the result as follows:
Prime ideals P in Z[X] are one of the following forms:

(2) P =


(0),
(f(X)) for f ∈ Z[X] irreducible and primitive,
(p) for some prime p ∈ Z,
(p, f(X)) for some prime p ∈ Z, and f is irreducible mod p.

Now, we characterize the topology on Spec(Z[X]). Let I ⊂ Z[X] be a proper ideal.
Consider I ∩ Z = nZ, we have two cases,
(Case1) I ∩ Z = nZ with n 6= 0,±1:



4 KIM, SUNGJIN

Let p ∈ V (I), i.e. p is a prime ideal containing I. Then p∩Z = pZ for some prime
p|n. Fix a prime p|n. The ideal I + pZ[X] ⊂ Z[X] maps to some ideal (f(X)) ⊂
Fp[X] by reducing mod p, since Fp[X] is a PID. Let fi be distinct irreducible factors
of f in Fp[X] if deg(f)> 0 , and enumeration of all irreducible polynomials of Fp[X]
with 0 if f = 0. Thus, we have (f(X)) ⊂ (fi(X)) ⊂ Fp[X] for each i. Pulling back
these ideals to Z[X], we obtain I ⊂ I + pZ[X] ⊂ (p, fi(X)) ⊂ Z[X] for each i.
Hence, the result

V (I) = {(p, fp,i) | p|n, (I + pZ[X])/(pZ[X]) = (fp(X)) ⊂ Fp[X],deg(fp) > 0, fp,i are

distinct irreducible factor of f in Fp[X]}⋃
{(p, fp,i) | p|n, (I + pZ[X])/(pZ[X]) = (0) ⊂ Fp[X], fp,i are enumeration of

all irreducible polynomials of Fp[X] with 0}.

(Case2) I ∩ Z = (0):
Consider IQ[X] = (f(X)) ( Q[X] with f being primitive. Then we obtain I =
f(X)Z[X] by Gauss lemma. Let fi be distinct irreducible factors of f , and τi ∈ C
be the corresponding roots of fi. For each i, we need to find primes p such that
(p, fi) become proper. To do this, we use Gauss lemma again so that we obtain the
result:

(p, fi) is proper ⇐⇒ 1
p
/∈ Z[τi].

Hence, we have,

V (I) = {(p, fi,j) | fi|f,
1
p
/∈ Z[τi], ((fi) + pZ[X])/(pZ[X]) = (fi(X) mod p) ⊂ Fp[X],

deg(fi mod p) > 0, fi,j are distinct irreducible factor of fi in Fp[X]}⋃
{(fi)| fi|f irreducible}.

Problem4.
Let X = Y = SpecC, S = SpecR. They are all affine schemes. Also, C can be
regarded as R-algebra. Then Z = Spec(C ⊗R C) is the desired pull-back of the
diagram,

Z - SpecC

=

SpecC
?

- SpecR
?

Since C ⊗R C is isomorphic to C × C as rings, we have Z = Spec(C × C). Hence,
we obtain the result

Z = SpecC×SpecR SpecC = {C× {0}, {0} × C}.
Problem6.
⇐) Suppose first that A has a nontrivial idempotent a. Then, we claim that
A = aA ⊕ (1 − a)A. For any x ∈ A, x = ax + (1 − a)x, so A = aA + (1 − a)A. If
y ∈ aA ∩ (1− a)A, then ay ∈ a(1− a)A = 0, and (1− a)y ∈ (1− a)aA = 0. Thus,
y = 0 and A = aA⊕ (1− a)A.
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Now, we have V (aA) ∩ V ((1 − a)A) = V (aA + (1 − a)A) = V (A) = ∅, and
V (aA) ∪ V ((1 − a)A) = V (aA ∩ (1 − a)A) = V ((0)) = Spec(A). Hence, Spec(A)
is covered by disjoint union of nonempty closed sets V (aA) and V ((1 − a)A), i.e.
Spec(A) is disconnected.

⇒) Suppose that Spec(A) is disconnected, i.e. Spec(A) = V (J1) ∪ V (J2), V (J1) ∩
V (J2) = ∅ for some ideals J1, J2 ⊂ A, and V (J1) 6= ∅, V (J2) 6= ∅. If I, J are radical
ideals, then we have V (I) = V (J)⇐⇒ I = J . Take I1 =

√
J1 and I2 =

√
J2. Then,

we obtain I1 + I2 = A and I1 ∩ I2 =
√

(0). Also, we know that I1, I2 are proper.
Thus, we can find a ∈ I1, b ∈ I2 such that a+ b = 1. However ab ∈ I1I2 =

√
(0), so

we see that (ab)n = 0 for some n ≥ 1. Using (a+b)2n = 1, we obtain anA+bnA = A.
Let a′ ∈ anA, and b′ ∈ bnA with a′ + b′ = 1. Then, a′ is the desired nontrivial
idempotent, since a′ = a′(a′ + b′) = a′2 + a′b′ = a′2 implies a′2 = a′.

Problem7.
Remark that f(P ) is the image of f in the residue field AP /(PAP ) where AP is
the localization. We claim that f(P ) = 0 if and only if f ∈ P . We see that

f(P ) = 0⇐⇒ There exists s ∈ S = A− P such that fs/s ∈ PAP
⇐⇒ There exists s′, s′′ ∈ S and p ∈ P such that (p− fs′)ss′′ = 0
⇐⇒ f ∈ P

, since s′ss′′ /∈ P . Hence, the set {P ∈ Spec(A)| f(P ) = 0} is just V (fA), so it is
closed.

Problem8.
Take A = Z[X], and U = D(2) ∪ D(x) = Spec(A) − (V (2A) ∩ V (xA)). Suppose
U = D(a) for some a ∈ A. Then,

U = D(a)⇐⇒ Spec(A)− V (aA) = Spec(A)− V ((2, x))

⇐⇒ V (aA) = V ((2, x)) = {(2, x)}.

, since (2, x) is maximal ideal. Thus, for a prime ideal p ∈ Spec(A), we have
p ⊃ aA⇐⇒ p = (2, x). Suppose deg(a) > 0, then we can find an irreducible factor
b ∈ A of a. Further, as in problem3, we can find a prime number p ∈ Z such that
(p, b) is proper. Then, we obtain V (aA) ⊃ {(b),m}, where m is a maximal ideal that
contains (p, b), and this is a contradiction to V (aA) = {(2, x)}. Now, we assume
that a ∈ Z. Our assumption implies that a cannot be unit or zero. Then, there
is a prime number p ∈ Z such that V (aA) ⊃ {(p), (p, x)}. This again contradicts
V (aA) = {(2, x)}. Hence U = D(a) is impossible for any a ∈ A.

Problem9.
First, considerMorRings(Z,Q) = {i : Z ↪→ Q}, andMorTopSpaces(SpecQ,SpecZ) =
{f : SpecQ −→ SpecZ| f is continuous}. We have only one point inMorRings(Z,Q),
but MorTopSpaces(SpecQ,SpecZ) contains infinitely many points, since it contains
fp : (0) ⊂ Q 7→ pZ ⊂ Z for all prime p ∈ Z. Thus, the functor Spec(−) is not full.

Then we consider MorRings(C,C) ⊃ {i, c}, where i is identity, c is complex conju-
gation. Also, consider MorTopSpaces(SpecC,SpecC) = {i0}, where i0 : (0) ⊂ C 7→
(0) ⊂ C. We have at least two points in MorRings(C,C), but we have only one
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point in MorTopSpaces(SpecC,SpecC). Hence, the functor Spec(−) is not faithful.

Problem12.
SHEAF(1): F(φ) = {φ} is a final object in the category SETS.
SHEAF(2): Let U =

⋃
Uα be an open cover. Let a, b ∈ F(U) with a|Uα = b|Uα for

all α. For any x ∈ U , there is some α such that x ∈ Uα. Since a|Uα = b|Uα , we have

a(x) = a|Uα(x) = b|Uα(x) = b(x).

Hence, a = b.
SHEAF(3): Let U =

⋃
Uα be an open cover. Let aα ∈ F(Uα) satisfy

aα|Uα⋂Uβ = aβ |Uα⋂Uβ

for any α, β. We define a ∈ F(U) by

a(x) = aα(x)

where x ∈ Uα. Then we have a|Uα = aα.
Thus, F is a sheaf.
We claim that (X,F) is a scheme. First, consider Fx = {[U, a]|x ∈ U ⊂open

X, a ∈ F(U)}. Since X is a discrete topological space, we can further show that
Fx = {[{x}, a]|a ∈ F({x})} ' k. This shows that (X,F) is a local ringed space.
For any x ∈ X, U = {x}, we have ({x},F|{x}) ' (Speck,Ok). This proves our
claim.
Suppose that (X,F) ' (SpecA,OA). For any p ∈ SpecA, (OA)p = Ap = k. Since
Ap is a local ring with a unique maximal ideal pAp and k is a field, we must have
p = 0. Thus, SpecA = {0}, and A cannot have nonunit element, otherwise SpecA
would contain nonzero maximal ideal of A. It follows that A is a field, and (X,F)
is affine if and only if X is a singleton set.

Problem13.
(a) We remark that for any f ∈ K, there is n ∈ N such that f ∈ k(X1, · · · , Xn).
So, there is n ∈ N such that a(f) = (a1, a2, · · · ) with ai = 0 for i ≥ n. Also, for
any f, g ∈ K−{0}, we have a(fg) = a(f) +a(g), a(f +g) ≥ min(a(f), a(g)), where
the addition is componentwise. Then, it follows that {f ∈ K|a(f) = 0} is the set
of units in A and {f ∈ K|a(f) > 0} forms the ideal of all nonunits in A. Further,
we obtain that if a(f) = (a1, a2, · · · , an, 0, 0, · · · ), then f = uXa1

1 Xa2
2 · · ·Xan

n for
some unit u ∈ A. Now, we claim that Q :=

∑
i∈N XiA = {f ∈ K|a(f) > 0}.

The inclusion ⊃ is clear. To prove ⊂, let f = X1f2 + · · · + Xmfm. Then,
a(f) ≥ min(a(X1f1), · · · , a(Xmfm)) > 0. Hence, the claim is proved and Q is
the unique maximal ideal of A.

(b) The inclusion Pi ⊂ Pi+1 is clear for all i ≥ 1. Also, Pi ⊂ Q is obvious,
since Q = {f ∈ A|a(f) > 0}. To show that Pi is a prime ideal in A, let f, g ∈
A − Pi. Then, for some b(f)i+1, b(f)i+2, · · · , and b(g)i+1, b(g)i+2, · · · , we have
a(f) ≤ (0, · · · , 0, b(f)i+1, b(f)i+2, · · · ), and a(g) ≤ (0, · · · , 0, b(g)i+1, b(g)i+2, · · · ).
Adding these up, we obtain

a(fg) = a(f) + a(g) ≤ (0, · · · , 0, b(f)i+1 + b(g)i+1, b(f)i+2 + b(g)i+2, · · · ).
This implies fg ∈ A− Pi. Hence, Pi is a prime ideal in A. Furthermore, the same
argument as in (a) shows that Pi =

∑
j≤iXjA.
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(c) Let P be a prime ideal in A. Let f ∈ P − {0}, and f = uXa1
1 · · ·Xan

n for some
unit u ∈ A. Since P is a prime ideal, we can find i ≤ n such that Xi ∈ P . Define a
set B = {i ∈ N|Xi ∈ P}. We divide into two cases:
(Case1) B is infinite:
We can show that P contains all Xn from the formula(*),

Xi = Xj
Xi +Xj

Xj
−Xj

for i < j. Hence, we obtain P = Q.
(Case2) B is finite:
By the formula(*), there exists n ∈ N such that B = {i ∈ N|1 ≤ i ≤ n}. Hence, it
follows that P =

∑
i≤nXiA = Pn.

We proved that SpecA = {0, Q, P1, P2, · · · , Pn, · · · }.
The Zariski topology T on SpecA is T = {∅} ∪ {V (p)|p ∈ SpecA}. To prove
this, let I be a proper ideal in A. Then, consider m = min{n ∈ N|I ⊂ Pn}. If
m ∈ N, then, V (I) = V (Pm). If m = ∞, then V (I) = V (Q) = {Q}. In fact,
V (Pn) = {Q,Pn, Pn+1, · · · } for each n ≥ 1.

(d) The topology on SpecA− {Q} is the subspace topology

T ′ = {∅} ∪ {V (p)− {Q}|p ∈ SpecA}.

For each point Pn ∈ SpecA − {Q}, we have {Pn} = V (Pn) − {Q} 6= {Pn}. For
0 ∈ SpecA − {Q}, {0} = V (0) − {Q} 6= {0}. Hence, the scheme SpecA − {Q} has
no closed points.

Problem14.
As a map of topological spaces, it is clear thatX

f−→ Y factors throughX
f−→ U

i−→ Y ,
where U i−→ Y is the inclusion. Let f(x) = y, we have composition of morphisms

of schemes (X,F)
f−→ (U,G|U ) i−→ (Y,G). This induces morphisms of local rings

Gy
id−→ (G|U )y −→ Fx, since y ∈ U . Further, we know that the ring homomorphism

Gy −→ Fx is a local. Thus, Gy
id−→ (G|U )y −→ Fx is a composition of local ring

homomorphisms. Hence the morphism of schemes f factors through X −→ U and
U ↪→ Y .

Problem16.
Let (X,OX)

f−→ (SpecZ,OZ) be a morphism of schemes, and let f(x) = y. Then,
we have a local ring homomorphism OZ,y −→ OX,x. We have two cases,
(Case1) y = 0:
Since OZ,0 = Z(0) −→ OX,x is local, OZ,0 = Z(0) = Q ↪→ OX,x/mX,x = k(x) where
mX,x is the unique maximal ideal of OX,x. Thus, characteristic of k(x) is 0.
(Case2) y = pZ:
OZ,pZ = Z(p) −→ OX,x. Since the homomorphism is local, we have Z(p)/pZ(p) ↪→
OX,x/mX,x = k(x). Since Z(p)/pZ(p) = Z/pZ, we have Z/pZ ↪→ OX,x/mX,x = k(x).
Thus, characteristic of k(x) is p.
Hence, in either case, we have f(x) = pZ, where p is the characteristic of the residue
field k(x).

Problem19.
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We remark that the scheme structure on ProjS is given as follows. For each
p ∈ ProjS, we consider the ring S(p) of degree zero in the localized ring T−1S,
where T is the multiplicative system consisting of all homogeneous elements of S
which are not in p. For any open subset U ⊂ ProjS, we define O(U) to be the set of
functions s : U −→

∐
S(p) such that for each p ∈ U , s(p) ∈ S(p), and such that: for

each p ∈ U , there exists a neighborhood V of p in U , and homogeneous elements
a, f in S, of the same degree, such that for all q ∈ V , f /∈ q, and s(q) = a/f in S(q).
This O is a sheaf and (ProjS,O) is a scheme. Furthermore, for any p ∈ ProjS, the
stalk Op is isomorphic to the local ring S(p).

We define f : (ProjS,O) −→ (SpecS0,OS0) by p ∈ ProjS 7→ f(p) = q = p ∩ S0,
and for basic open set D(a) ⊂ SpecS0, define f ]D(a) : OS0(D(a)) = (S0)a −→
O(f−1(D(a))) by:

f ]D(a) :(S0)a −→ O(f−1(D(a)))

b/am 7→

(
f ]D(a)(b/a

m) : f−1(D(a))→
∐
S(p)

q 7→ b/am

)
.

This f ] induces a ring homomorphism of stalks(local rings):

(OS0)q = (S0)q

f]q−→ Op = S(p)

b/f 7→ b/f.

Since, q = p ∩ S0, this f ]q is a local ring homomorphism. Hence, we conclude that
(f, f ]) : (ProjS,O) −→ (SpecS0,OS0) is a natural morphism of schemes.

Problem20.
Let I ⊂ A be a homogeneous ideal, and let Id ⊂ I be the set of all homogeneous
elements in I having degree d. Then, we have

I =
⊕
d≥0

Id.

Furthermore, any ideal I satisfying this property is homogeneous. To show that
Ī is homogeneous, consider a ∈ Ī. By definition of Ī, there is m ≥ 0 such that
atmi ∈ I for all 0 ≤ i ≤ n. Write a =

∑
d≥0 ad, where ad is homogeneous element

of degree d. Then, adtmi ∈ I since atmi =
∑
d≥0 adt

m
i ∈ I with adt

m
i having degree

d + m, homogeneous. Since this holds for every 0 ≤ i ≤ n, we see that ad ∈ Ī for
every d ≥ 0. Hence, Ī is homogeneous.

Problem21.
Define V (I) = {p ∈ ProjA|I ⊂ p}.

⇒) It suffices to show that I and Ī define the same closed subschemes of ProjA.
First, we show the set-theoretic equality V (I) = V (Ī). It is clear that V (I) ⊃ V (Ī),
since I ⊂ Ī. Let p ∈ V (I) and a ∈ Ī. We claim that a ∈ p. By definition of Ī,
we have some m ≥ 0 such that atmi ∈ I for all 0 ≤ i ≤ n. Suppose a /∈ p, then
we must have tmi ∈ p for all i. This forces that the ideal (t0, · · · , tn) is contained
in p. Since p ∈ ProjA, p cannot contain (t0, · · · , tn). Thus, we proved our claim,
namely, V (I) ⊂ V (Ī). Hence, V (I) = V (Ī) follows.
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Now, we need to show that V (I) ' Proj(A/I) and V (Ī) ' Proj(A/Ī) are isomor-
phic as schemes. For, we consider the canonical surjection A/I −→ A/Ī given by
ā 7→ â. This induces a surjection of localized rings (A/I)(f) −→ (A/Ī)(f) which
associates ā/fr to â/fr for homogeneous a, f with deg f > 0 and deg a = rdeg f .
It will be enough to show that this map is also injective. But if â/fr = 0, then
fma ∈ Ī. There is an integer N such that tN0 f

ma, · · · , tNn fma ∈ I and for k large
enough fka ∈ I, so ā/fr = 0 in (A/I)(f).

⇐) Suppose I, J define the same closed subschemes of ProjA. Then, we have
(A/I)(f) ' (A/J)(f) for any homogeneous element f ∈ A+ via ā/fr 7→ â/fr. By
the way, a ∈ J̄ if and only if there is m such that atmi ∈ J for all i. This means
that â = 0 in (A/J)(ti) for each i. By the isomorphism, we have ā = 0 in (A/I)(ti)
for each i. Again, this is equivalent to atmii ∈ I for some mi. Taking maximum of
mi, we obtain that a ∈ Ī. Hence, a ∈ J̄ ⇔ a ∈ Ī, giving that Ī = J̄ .


