SOLUTIONS, MATH 214B

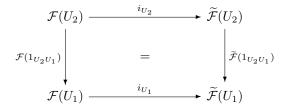
KIM, SUNGJIN

Problem1.

(a) Define $i: \mathcal{F} \longrightarrow \widetilde{\mathcal{F}}$ by

$$\begin{split} i_U:&\mathcal{F}(U)\longrightarrow\widetilde{\mathcal{F}}(U)\\ a\mapsto \begin{pmatrix}i_U(a):U\to Tot\widetilde{\mathcal{F}}\\ x\mapsto a_x\end{pmatrix}. \end{split}$$

Remark that $i_U(a): U \to Tot\widetilde{\mathcal{F}}$ is a continuous section. Let $U_1 \subset U_2 \subset X$ be open subsets of X. Consider the below diagram:



Then for $a \in \mathcal{F}(U_2)$, we have $\widetilde{\mathcal{F}}(1_{U_2U_1}) \circ i_{U_2}(a)(x) = a_x$ for $x \in U_1$. On the other hand, $i_{U_1} \circ \mathcal{F}(1_{U_2U_1})(a)(x) = (a|_{U_1})_x$ for $x \in U_1$. Indeed, the definition of stalks gives $a_x = (a|_{U_1})_x$. Hence, the diagram commutes and i is a natural morphism of presheaves $i : \mathcal{F} \to \widetilde{\mathcal{F}}$.

(b) \Leftarrow) This part is obvious, since $\widetilde{\mathcal{F}}$ is a sheaf.

 \Rightarrow) Suppose that \mathcal{F} is a sheaf. We want to find $j: \widetilde{\mathcal{F}} \to \mathcal{F}$ with $j \circ i = 1_{\mathcal{F}}$, and $i \circ j = 1_{\widetilde{\mathcal{F}}}$. For any continuous section s of p and any open set $U \subset X$, we have an open cover of U,

(1)
$$U = \bigcup_{a \in \mathcal{F}(U)} U_a$$

where $U_a = s^{-1}(\{a_x|x \in U\})$. We claim that there exist $j(s) \in \mathcal{F}(U)$ such that $j(s)|_{U_a} = a$ for each $a \in \mathcal{F}(U)$. In fact, $x \in U_a \cap U_b$ implies $a_x = b_x$. From SHEAF(2), we obtain $a|_{U_a \cap U_b} = b|_{U_a \cap U_b}$, and hence we obtain the existence of j(s) such that $j(s)|_{U_a} = a$ by SHEAF(3). Furthermore, this j(s) is uniquely determined by SHEAF(2).

Now, we show that $j \circ i = 1_{\mathcal{F}}$. Let $U \subset X$ be open, and $a \in \mathcal{F}(U)$. From $i(a)^{-1}\left(\{a_x|x\in U\}\right) = U$, we obtain ji(a) = a. It remains to show that $i\circ j = 1_{\widetilde{\mathcal{F}}}$. We use the open cover of $U = \bigcup U_a$ again. For $s\in \widetilde{\mathcal{F}}(U)$, $s(x) = a_x$ for $x\in U_a$. Definition of i in (a) implies $ij(s)(x) = j(s)_x = a_x = s(x)$. Hence, now SHEAF(2) implies that ij(s) = s.

1

(c) (Existence) We use (b) on $\mathcal G$ to obtain an isomorphism $i_G:\mathcal G\to\widetilde{\mathcal G}$, then it suffices to find $\widetilde j':\widetilde{\mathcal F}\to\widetilde{\mathcal G}$ such that $i_G^{-1}\circ\widetilde j'\circ i=j$. Define $\widetilde j':\widetilde{\mathcal F}\longrightarrow\widetilde{\mathcal G}$ by

$$\widetilde{j}'_U:\widetilde{\mathcal{F}}(U)\longrightarrow\widetilde{\mathcal{G}}(U)$$

$$\begin{pmatrix} s: U \to Tot\widetilde{\mathcal{F}} \\ x \mapsto [U, a] \in \mathcal{F}_x \end{pmatrix} \mapsto \begin{pmatrix} \widetilde{j}'_U(s): U \to Tot\widetilde{\mathcal{G}} \\ x \mapsto [U, j(a)] \in \mathcal{G}_x \end{pmatrix}.$$

Then, the diagram

$$\widetilde{\mathcal{F}}(U_2) \xrightarrow{\widetilde{j}'} \widetilde{\mathcal{G}}(U_2)$$

$$\stackrel{res}{\downarrow} = \qquad \qquad \downarrow res$$

$$\widetilde{\mathcal{F}}(U_1) \xrightarrow{\widetilde{j}'} \widetilde{\mathcal{G}}(U_1)$$

commutes where $U_1 \subset U_2 \subset X$. Let $\widetilde{j} = i_G^{-1} \circ \widetilde{j}'$. (Uniqueness) Let $U \subset X$ be open. We use the open cover in (1) in (b) again, $U = \bigcup U_a$. For any $s \in \widetilde{\mathcal{F}}(U)$, we have $i(a|_{U_a}) = s|_{U_a}$. The condition $\widetilde{j} \circ i = j$ forces $\widetilde{j}(s|_{U_a}) = \widetilde{j}(s)|_{U_a} = j(a|_{U_a})$. Hence by SHEAF(2), $\widetilde{j}(s)$ is uniquely determined.

Problem2.

(a) SHEAF(1): $\mathcal{G}(\phi) = \{\phi\}$ is a final object in the category SETS.

SHEAF(2): Let $U = \bigcup U_{\alpha}$ be an open cover. Let $a, b \in \mathcal{G}(U)$ with $a|_{U_{\alpha}} = b|_{U_{\alpha}}$ for all α . For any $x \in U$, there is some α such that $x \in U_{\alpha}$. Since $a|_{U_{\alpha}} = b|_{U_{\alpha}}$, we have

$$a(x) = a|_{U_{\alpha}}(x) = b|_{U_{\alpha}}(x) = b(x).$$

Hence, a = b.

SHEAF(3): Let $U = \bigcup U_{\alpha}$ be an open cover. Let $a_{\alpha} \in \mathcal{G}(U_{\alpha})$ satisfy

$$a_{\alpha}|_{U_{\alpha} \cap U_{\beta}} = a_{\beta}|_{U_{\alpha} \cap U_{\beta}}$$

for any α, β . We define $a \in \mathcal{G}(U)$ by

$$a(x) = a_{\alpha}(x)$$

where $x \in U_{\alpha}$. Then we have $a|_{U_{\alpha}} = a_{\alpha}$.

(b) The natural morphism $i: \mathcal{F} \to \mathcal{G}$ is defined by

$$\begin{split} i_U:&\mathcal{F}(U)=A\longrightarrow\mathcal{G}(U)\\ a\in A\mapsto \begin{pmatrix} i_U(a):U\to A\\ x\mapsto a \end{pmatrix}. \end{split}$$

Recall from Problem1 (a) that $i: \mathcal{F} \longrightarrow \widetilde{\mathcal{F}}$ is defined by

$$\begin{split} i_U:&\mathcal{F}(U) \longrightarrow \widetilde{\mathcal{F}}(U) \\ a \mapsto \begin{pmatrix} i_U(a): U \to Tot\widetilde{\mathcal{F}} \\ x \mapsto a_x \end{pmatrix}. \end{split}$$

We show that these morphisms are isomorphic by showing that

$$f: \mathcal{G}(U) \longrightarrow \widetilde{\mathcal{F}}(U)$$

$$(s: U \to A) \mapsto \begin{pmatrix} \widetilde{s}: U \to Tot\mathcal{F} \\ x \mapsto s(x)_x \end{pmatrix}$$

is an isomorphism of sets.

(f is injective) Suppose $s_1(x) \neq s_2(x)$ for some $x \in U$, then $s_1(x)|_x \neq s_2(x)|_x$. Thus, $f(s_1) \neq f(s_2)$.

(f is surjective) Let $\tilde{s}: U \to Tot\mathcal{F}$ be a continuous section. For each $x \in U$, define $s(x) \in A$ by $\tilde{s}(x) = s(x)|_x$. Then, for fixed $a \in A$, we have

$${x \in U | s(x) = a} = {x \in U | \tilde{s}(x) \in {a_x | x \in U}}.$$

The RHS is an open set since \tilde{s} is continuous, thus LHS is also an open set in U. Since this is true for all $a \in A$, we conclude that s is continuous and $f(s) = \tilde{s}$. Hence the natural morphism $i: \mathcal{F} \to \mathcal{G}$ is isomorphic to $i: \mathcal{F} \to \widetilde{\mathcal{F}}$.

Problem3.

Let P be a nonzero prime ideal in $A = \mathbb{Z}[X]$. Then the natural homomorphism $\mathbb{Z} \longrightarrow A/P$ has kernel $P \cap \mathbb{Z}$. This gives an embedding of $\mathbb{Z}/(P \cap \mathbb{Z})$ into A/P. Since A/P is an integral domain, so is $\mathbb{Z}/(P \cap \mathbb{Z})$. Thus, we have two cases

$$P \cap \mathbb{Z} = \begin{cases} p\mathbb{Z} & \text{for some prime } p \in \mathbb{Z} \\ (0) & \end{cases}$$

(Case1) $P \cap \mathbb{Z} = p\mathbb{Z}$ for some prime $p \in \mathbb{Z}$: By 3rd isomorphism theorem, we have

$$A/P \simeq \left(\mathbb{Z}/p\mathbb{Z}[X]\right)/(P/p\mathbb{Z}[X]).$$

In fact $\mathbb{Z}/p\mathbb{Z}[X] = \mathbb{F}_p[X]$, and the LHS is an integral domain. It follows that $P/p\mathbb{Z}[X]$ is a prime ideal in $\mathbb{F}_p[X]$. Since $\mathbb{F}_p[X]$ is UFD, $P/p\mathbb{Z}[X] = (f(X))$ for some $f(X) \in \mathbb{F}_p[X]$ irreducible polynomial of degree ≥ 1 or $P/p\mathbb{Z}[X] = (0)$. Hence, in this case, we obtain P = (p, f(X)) or $P = p\mathbb{Z}[X]$ where f is irreducible mod p. (Case2) $P \cap \mathbb{Z} = (0)$:

Consider the ideal $P\mathbb{Q}[X] \subset \mathbb{Q}[X]$, this is a proper prime ideal in $\mathbb{Q}[X]$. So, $P\mathbb{Q}[X] = f(X)\mathbb{Q}[X]$ where f is irreducible over \mathbb{Q} . Further, we can assume that the polynomial f is primitive. We claim that $P = f(X)\mathbb{Z}[X]$. Suppose $h \in P$, h = fg for some $g \in \mathbb{Q}[X]$. Taking content(Gauss lemma) on each side, we obtain $g \in \mathbb{Z}[X]$. Hence it follows that $P = f(X)\mathbb{Z}[X]$.

Now, we can write the result as follows:

Prime ideals P in $\mathbb{Z}[X]$ are one of the following forms:

$$(2) \qquad P = \begin{cases} (0), \\ (f(X)) & \text{for } f \in \mathbb{Z}[X] \text{ irreducible and primitive,} \\ (p) & \text{for some prime } p \in \mathbb{Z}, \\ (p, f(X)) & \text{for some prime } p \in \mathbb{Z}, \text{ and } f \text{ is irreducible mod } p. \end{cases}$$

Now, we characterize the topology on $\operatorname{Spec}(\mathbb{Z}[X])$. Let $I \subset \mathbb{Z}[X]$ be a proper ideal. Consider $I \cap \mathbb{Z} = n\mathbb{Z}$, we have two cases, (Case1) $I \cap \mathbb{Z} = n\mathbb{Z}$ with $n \neq 0, \pm 1$:

Let $\mathfrak{p} \in V(I)$, i.e. \mathfrak{p} is a prime ideal containing I. Then $\mathfrak{p} \cap \mathbb{Z} = p\mathbb{Z}$ for some prime p|n. Fix a prime p|n. The ideal $I+p\mathbb{Z}[X] \subset \mathbb{Z}[X]$ maps to some ideal $(f(X)) \subset \mathbb{F}_p[X]$ by reducing mod p, since $\mathbb{F}_p[X]$ is a PID. Let f_i be distinct irreducible factors of f in $\mathbb{F}_p[X]$ if $\deg(f)>0$, and enumeration of all irreducible polynomials of $\mathbb{F}_p[X]$ with 0 if f=0. Thus, we have $(f(X)) \subset (f_i(X)) \subset \mathbb{F}_p[X]$ for each i. Pulling back these ideals to $\mathbb{Z}[X]$, we obtain $I \subset I + p\mathbb{Z}[X] \subset (p, f_i(X)) \subset \mathbb{Z}[X]$ for each i. Hence, the result

 $V(I) = \{(p, f_{p,i}) \mid p \mid n, (I + p\mathbb{Z}[X])/(p\mathbb{Z}[X]) = (f_p(X)) \subset \mathbb{F}_p[X], \deg(f_p) > 0, f_{p,i} \text{ are distinct irreducible factor of } f \text{ in } \mathbb{F}_p[X]\}$

 $\bigcup\{(p, f_{p,i}) \mid p|n, (I + p\mathbb{Z}[X])/(p\mathbb{Z}[X]) = (0) \subset \mathbb{F}_p[X], f_{p,i} \text{ are enumeration of all irreducible polynomials of } \mathbb{F}_p[X] \text{ with } 0\}.$

(Case2) $I \cap \mathbb{Z} = (0)$:

Consider $I\mathbb{Q}[X] = (f(X)) \subsetneq \mathbb{Q}[X]$ with f being primitive. Then we obtain $I = f(X)\mathbb{Z}[X]$ by Gauss lemma. Let f_i be distinct irreducible factors of f, and $\tau_i \in \mathbb{C}$ be the corresponding roots of f_i . For each i, we need to find primes p such that (p, f_i) become proper. To do this, we use Gauss lemma again so that we obtain the result:

$$(p, f_i)$$
 is proper $\iff \frac{1}{p} \notin \mathbb{Z}[\tau_i].$

Hence, we have,

$$\begin{split} V(I) &= \{(p,f_{i,j}) \mid f_i | f, \frac{1}{p} \notin \mathbb{Z}[\tau_i], ((f_i) + p\mathbb{Z}[X]) / (p\mathbb{Z}[X]) = (f_i(X) \bmod p) \subset \mathbb{F}_p[X], \\ &\deg(f_i \bmod p) > 0, f_{i,j} \text{ are distinct irreducible factor of } f_i \text{ in } \mathbb{F}_p[X]\} \\ &\bigcup \{(f_i) \mid f_i | f \text{ irreducible}\}. \end{split}$$

Problem4.

Let $X = Y = \operatorname{Spec}\mathbb{C}$, $S = \operatorname{Spec}\mathbb{R}$. They are all affine schemes. Also, \mathbb{C} can be regarded as \mathbb{R} -algebra. Then $Z = \operatorname{Spec}(\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C})$ is the desired pull-back of the diagram,

Since $\mathbb{C} \otimes_{\mathbb{R}} \mathbb{C}$ is isomorphic to $\mathbb{C} \times \mathbb{C}$ as rings, we have $Z = \operatorname{Spec}(\mathbb{C} \times \mathbb{C})$. Hence, we obtain the result

$$Z = \operatorname{Spec} \mathbb{C} \times_{\operatorname{Spec} \mathbb{R}} \operatorname{Spec} \mathbb{C} = \{ \mathbb{C} \times \{0\}, \{0\} \times \mathbb{C} \}.$$

Problem6.

 \Leftarrow) Suppose first that A has a nontrivial idempotent a. Then, we claim that $A = aA \oplus (1-a)A$. For any $x \in A$, x = ax + (1-a)x, so A = aA + (1-a)A. If $y \in aA \cap (1-a)A$, then $ay \in a(1-a)A = 0$, and $(1-a)y \in (1-a)aA = 0$. Thus, y = 0 and $A = aA \oplus (1-a)A$.

Now, we have $V(aA) \cap V((1-a)A) = V(aA + (1-a)A) = V(A) = \emptyset$, and $V(aA) \cup V((1-a)A) = V(aA \cap (1-a)A) = V((0)) = \operatorname{Spec}(A)$. Hence, $\operatorname{Spec}(A)$ is covered by disjoint union of nonempty closed sets V(aA) and V((1-a)A), i.e. $\operatorname{Spec}(A)$ is disconnected.

 \Rightarrow) Suppose that Spec(A) is disconnected, i.e. Spec(A) = $V(J_1) \cup V(J_2)$, $V(J_1) \cap V(J_2) = \emptyset$ for some ideals $J_1, J_2 \subset A$, and $V(J_1) \neq \emptyset$, $V(J_2) \neq \emptyset$. If I, J are radical ideals, then we have $V(I) = V(J) \iff I = J$. Take $I_1 = \sqrt{J_1}$ and $I_2 = \sqrt{J_2}$. Then, we obtain $I_1 + I_2 = A$ and $I_1 \cap I_2 = \sqrt{(0)}$. Also, we know that I_1, I_2 are proper. Thus, we can find $a \in I_1, b \in I_2$ such that a + b = 1. However $ab \in I_1I_2 = \sqrt{(0)}$, so we see that $(ab)^n = 0$ for some $n \geq 1$. Using $(a+b)^{2n} = 1$, we obtain $a^nA + b^nA = A$. Let $a' \in a^nA$, and $b' \in b^nA$ with a' + b' = 1. Then, a' is the desired nontrivial idempotent, since $a' = a'(a' + b') = a'^2 + a'b' = a'^2$ implies $a'^2 = a'$.

Problem7.

Remark that f(P) is the image of f in the residue field $A_P/(PA_P)$ where A_P is the localization. We claim that f(P) = 0 if and only if $f \in P$. We see that

$$f(P)=0 \iff$$
 There exists $s\in S=A-P$ such that $fs/s\in PA_P$ \iff There exists $s',s''\in S$ and $p\in P$ such that $(p-fs')ss''=0$ $\iff f\in P$

, since $s'ss'' \notin P$. Hence, the set $\{P \in \text{Spec}(A) | f(P) = 0\}$ is just V(fA), so it is closed.

Problem8.

Take $A = \mathbb{Z}[X]$, and $U = D(2) \cup D(x) = \operatorname{Spec}(A) - (V(2A) \cap V(xA))$. Suppose U = D(a) for some $a \in A$. Then,

$$U = D(a) \iff \operatorname{Spec}(A) - V(aA) = \operatorname{Spec}(A) - V((2, x))$$
$$\iff V(aA) = V((2, x)) = \{(2, x)\}.$$

, since (2,x) is maximal ideal. Thus, for a prime ideal $\mathfrak{p} \in \operatorname{Spec}(A)$, we have $\mathfrak{p} \supset aA \Longleftrightarrow \mathfrak{p} = (2,x)$. Suppose $\deg(a) > 0$, then we can find an irreducible factor $b \in A$ of a. Further, as in problem3, we can find a prime number $p \in \mathbb{Z}$ such that (p,b) is proper. Then, we obtain $V(aA) \supset \{(b),\mathfrak{m}\}$, where \mathfrak{m} is a maximal ideal that contains (p,b), and this is a contradiction to $V(aA) = \{(2,x)\}$. Now, we assume that $a \in \mathbb{Z}$. Our assumption implies that a cannot be unit or zero. Then, there is a prime number $p \in \mathbb{Z}$ such that $V(aA) \supset \{(p), (p,x)\}$. This again contradicts $V(aA) = \{(2,x)\}$. Hence U = D(a) is impossible for any $a \in A$.

Problem9.

First, consider $Mor_{Rings}(\mathbb{Z}, \mathbb{Q}) = \{i : \mathbb{Z} \hookrightarrow \mathbb{Q}\}$, and $Mor_{TopSpaces}(\operatorname{Spec}\mathbb{Q}, \operatorname{Spec}\mathbb{Z}) = \{f : \operatorname{Spec}\mathbb{Q} \longrightarrow \operatorname{Spec}\mathbb{Z} | f \text{ is continuous}\}$. We have only one point in $Mor_{Rings}(\mathbb{Z}, \mathbb{Q})$, but $Mor_{TopSpaces}(\operatorname{Spec}\mathbb{Q}, \operatorname{Spec}\mathbb{Z})$ contains infinitely many points, since it contains $f_p : (0) \subset \mathbb{Q} \mapsto p\mathbb{Z} \subset \mathbb{Z}$ for all prime $p \in \mathbb{Z}$. Thus, the functor $\operatorname{Spec}(-)$ is not full.

Then we consider $Mor_{Rings}(\mathbb{C},\mathbb{C}) \supset \{i,c\}$, where i is identity, c is complex conjugation. Also, consider $Mor_{TopSpaces}(\operatorname{Spec}\mathbb{C},\operatorname{Spec}\mathbb{C}) = \{i_0\}$, where $i_0:(0) \subset \mathbb{C} \mapsto (0) \subset \mathbb{C}$. We have at least two points in $Mor_{Rings}(\mathbb{C},\mathbb{C})$, but we have only one

point in $Mor_{TopSpaces}(\operatorname{Spec}\mathbb{C}, \operatorname{Spec}\mathbb{C})$. Hence, the functor $\operatorname{Spec}(-)$ is not faithful.

Problem12.

SHEAF(1): $\mathcal{F}(\phi) = \{\phi\}$ is a final object in the category SETS.

SHEAF(2): Let $U = \bigcup U_{\alpha}$ be an open cover. Let $a, b \in \mathcal{F}(U)$ with $a|_{U_{\alpha}} = b|_{U_{\alpha}}$ for all α . For any $x \in U$, there is some α such that $x \in U_{\alpha}$. Since $a|_{U_{\alpha}} = b|_{U_{\alpha}}$, we have

$$a(x) = a|_{U_{\alpha}}(x) = b|_{U_{\alpha}}(x) = b(x).$$

Hence, a = b.

SHEAF(3): Let $U = \bigcup U_{\alpha}$ be an open cover. Let $a_{\alpha} \in \mathcal{F}(U_{\alpha})$ satisfy

$$a_{\alpha}|_{U_{\alpha} \cap U_{\beta}} = a_{\beta}|_{U_{\alpha} \cap U_{\beta}}$$

for any α, β . We define $a \in \mathcal{F}(U)$ by

$$a(x) = a_{\alpha}(x)$$

where $x \in U_{\alpha}$. Then we have $a|_{U_{\alpha}} = a_{\alpha}$.

Thus, \mathcal{F} is a sheaf.

We claim that (X, \mathcal{F}) is a scheme. First, consider $\mathcal{F}_x = \{[U, a] | x \in U \subset_{\text{open}} X, a \in \mathcal{F}(U)\}$. Since X is a discrete topological space, we can further show that $\mathcal{F}_x = \{[\{x\}, a] | a \in \mathcal{F}(\{x\})\} \simeq k$. This shows that (X, \mathcal{F}) is a local ringed space. For any $x \in X$, $U = \{x\}$, we have $(\{x\}, \mathcal{F}|_{\{x\}}) \simeq (\text{Spec}k, \mathcal{O}_k)$. This proves our claim.

Suppose that $(X, \mathcal{F}) \simeq (\operatorname{Spec} A, \mathcal{O}_A)$. For any $\mathfrak{p} \in \operatorname{Spec} A$, $(\mathcal{O}_A)_{\mathfrak{p}} = A_{\mathfrak{p}} = k$. Since $A_{\mathfrak{p}}$ is a local ring with a unique maximal ideal $\mathfrak{p}A_{\mathfrak{p}}$ and k is a field, we must have $\mathfrak{p} = 0$. Thus, $\operatorname{Spec} A = \{0\}$, and A cannot have nonunit element, otherwise $\operatorname{Spec} A$ would contain nonzero maximal ideal of A. It follows that A is a field, and (X, \mathcal{F}) is affine if and only if X is a singleton set.

Problem13.

- (a) We remark that for any $f \in K$, there is $n \in \mathbb{N}$ such that $f \in k(X_1, \cdots, X_n)$. So, there is $n \in \mathbb{N}$ such that $a(f) = (a_1, a_2, \cdots)$ with $a_i = 0$ for $i \geq n$. Also, for any $f, g \in K \{0\}$, we have a(fg) = a(f) + a(g), $a(f+g) \geq \min(a(f), a(g))$, where the addition is componentwise. Then, it follows that $\{f \in K | a(f) = 0\}$ is the set of units in A and $\{f \in K | a(f) > 0\}$ forms the ideal of all nonunits in A. Further, we obtain that if $a(f) = (a_1, a_2, \cdots, a_n, 0, 0, \cdots)$, then $f = uX_1^{a_1}X_2^{a_2} \cdots X_n^{a_n}$ for some unit $u \in A$. Now, we claim that $Q := \sum_{i \in \mathbb{N}} X_i A = \{f \in K | a(f) > 0\}$. The inclusion \supset is clear. To prove \subset , let $f = X_1 f_2 + \cdots + X_m f_m$. Then, $a(f) \geq \min(a(X_1 f_1), \cdots, a(X_m f_m)) > 0$. Hence, the claim is proved and Q is the unique maximal ideal of A.
- (b) The inclusion $P_i \subset P_{i+1}$ is clear for all $i \geq 1$. Also, $P_i \subset Q$ is obvious, since $Q = \{f \in A | a(f) > 0\}$. To show that P_i is a prime ideal in A, let $f, g \in A P_i$. Then, for some $b(f)_{i+1}, b(f)_{i+2}, \cdots$, and $b(g)_{i+1}, b(g)_{i+2}, \cdots$, we have $a(f) \leq (0, \cdots, 0, b(f)_{i+1}, b(f)_{i+2}, \cdots)$, and $a(g) \leq (0, \cdots, 0, b(g)_{i+1}, b(g)_{i+2}, \cdots)$. Adding these up, we obtain

$$a(fg) = a(f) + a(g) \le (0, \dots, 0, b(f)_{i+1} + b(g)_{i+1}, b(f)_{i+2} + b(g)_{i+2}, \dots).$$

This implies $fg \in A - P_i$. Hence, P_i is a prime ideal in A. Furthermore, the same argument as in (a) shows that $P_i = \sum_{j < i} X_j A$.

(c) Let P be a prime ideal in A. Let $f \in P - \{0\}$, and $f = uX_1^{a_1} \cdots X_n^{a_n}$ for some unit $u \in A$. Since P is a prime ideal, we can find $i \leq n$ such that $X_i \in P$. Define a set $B = \{i \in \mathbb{N} | X_i \in P\}$. We divide into two cases:

(Case1) B is infinite:

We can show that P contains all X_n from the formula(*),

$$X_i = X_j \frac{X_i + X_j}{X_j} - X_j$$

for i < j. Hence, we obtain P = Q.

(Case2) B is finite:

By the formula(*), there exists $n \in N$ such that $B = \{i \in \mathbb{N} | 1 \le i \le n\}$. Hence, it follows that $P = \sum_{i \le n} X_i A = P_n$.

We proved that $\operatorname{Spec} A = \{0, Q, P_1, P_2, \cdots, P_n, \cdots\}$. The Zariski topology \mathcal{T} on $\operatorname{Spec} A$ is $\mathcal{T} = \{\emptyset\} \cup \{V(\mathfrak{p}) | \mathfrak{p} \in \operatorname{Spec} A\}$. To prove this, let I be a proper ideal in A. Then, consider $m = \min\{n \in \mathbb{N} | I \subset P_n\}$. If $m \in \mathbb{N}$, then, $V(I) = V(P_m)$. If $m = \infty$, then $V(I) = V(Q) = \{Q\}$. In fact, $V(P_n) = \{Q, P_n, P_{n+1}, \dots\} \text{ for each } n \ge 1.$

(d) The topology on $\operatorname{Spec} A - \{Q\}$ is the subspace topology

$$\mathcal{T}' = \{\emptyset\} \cup \{V(\mathfrak{p}) - \{Q\} | \mathfrak{p} \in \operatorname{Spec} A\}.$$

For each point $P_n \in \operatorname{Spec} A - \{Q\}$, we have $\overline{\{P_n\}} = V(P_n) - \{Q\} \neq \{P_n\}$. For $0 \in \operatorname{Spec} A - \{Q\}, \overline{\{0\}} = V(0) - \{Q\} \neq \{0\}.$ Hence, the scheme $\operatorname{Spec} A - \{Q\}$ has no closed points.

Problem14.

As a map of topological spaces, it is clear that $X \xrightarrow{f} Y$ factors through $X \xrightarrow{f} U \xrightarrow{i} Y$, where $U \xrightarrow{i} Y$ is the inclusion. Let f(x) = y, we have composition of morphisms of schemes $(X,\mathcal{F}) \xrightarrow{f} (U,\mathcal{G}|_U) \xrightarrow{i} (Y,\mathcal{G})$. This induces morphisms of local rings $\mathcal{G}_y \xrightarrow{id} (\mathcal{G}|_U)_y \longrightarrow \mathcal{F}_x$, since $y \in U$. Further, we know that the ring homomorphism $\mathcal{G}_y \longrightarrow \mathcal{F}_x$ is a local. Thus, $\mathcal{G}_y \xrightarrow{id} (\mathcal{G}|_U)_y \longrightarrow \mathcal{F}_x$ is a composition of local ring homomorphisms. Hence the morphism of schemes f factors through $X \longrightarrow U$ and $U \hookrightarrow Y$.

Let $(X, \mathcal{O}_X) \xrightarrow{f} (\operatorname{Spec}\mathbb{Z}, \mathcal{O}_{\mathbb{Z}})$ be a morphism of schemes, and let f(x) = y. Then, we have a local ring homomorphism $\mathcal{O}_{\mathbb{Z},y} \longrightarrow \mathcal{O}_{X,x}$. We have two cases,

Since $\mathcal{O}_{\mathbb{Z},0} = \mathbb{Z}_{(0)} \longrightarrow \mathcal{O}_{X,x}$ is local, $\mathcal{O}_{\mathbb{Z},0} = \mathbb{Z}_{(0)} = \mathbb{Q} \hookrightarrow \mathcal{O}_{X,x}/\mathfrak{m}_{X,x} = k(x)$ where $\mathfrak{m}_{X,x}$ is the unique maximal ideal of $\mathcal{O}_{X,x}$. Thus, characteristic of k(x) is 0. (Case2) $y = p\mathbb{Z}$:

 $\mathcal{O}_{\mathbb{Z},p\mathbb{Z}} = \mathbb{Z}_{(p)} \longrightarrow \mathcal{O}_{X,x}$. Since the homomorphism is local, we have $\mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)} \hookrightarrow$ $\mathcal{O}_{X,x}/\mathfrak{m}_{X,x}=k(x)$. Since $\mathbb{Z}_{(p)}/p\mathbb{Z}_{(p)}=\mathbb{Z}/p\mathbb{Z}$, we have $\mathbb{Z}/p\mathbb{Z}\hookrightarrow \mathcal{O}_{X,x}/\mathfrak{m}_{X,x}=k(x)$. Thus, characteristic of k(x) is p.

Hence, in either case, we have $f(x) = p\mathbb{Z}$, where p is the characteristic of the residue field k(x).

Problem19.

We remark that the scheme structure on $\operatorname{Proj} S$ is given as follows. For each $\mathfrak{p} \in \operatorname{Proj} S$, we consider the ring $S_{(\mathfrak{p})}$ of degree zero in the localized ring $T^{-1}S$, where T is the multiplicative system consisting of all homogeneous elements of S which are not in \mathfrak{p} . For any open subset $U \subset \operatorname{Proj} S$, we define $\mathcal{O}(U)$ to be the set of functions $s: U \longrightarrow \coprod S_{(\mathfrak{p})}$ such that for each $\mathfrak{p} \in U$, $s(\mathfrak{p}) \in S_{(\mathfrak{p})}$, and such that: for each $\mathfrak{p} \in U$, there exists a neighborhood V of \mathfrak{p} in U, and homogeneous elements a, f in S, of the same degree, such that for all $\mathfrak{q} \in V$, $f \notin \mathfrak{q}$, and $s(\mathfrak{q}) = a/f$ in $S_{(\mathfrak{q})}$. This \mathcal{O} is a sheaf and $(\operatorname{Proj} S, \mathcal{O})$ is a scheme. Furthermore, for any $\mathfrak{p} \in \operatorname{Proj} S$, the stalk $\mathcal{O}_{\mathfrak{p}}$ is isomorphic to the local ring $S_{(\mathfrak{p})}$.

We define $f: (\operatorname{Proj} S, \mathcal{O}) \longrightarrow (\operatorname{Spec} S_0, \mathcal{O}_{S_0})$ by $\mathfrak{p} \in \operatorname{Proj} S \mapsto f(\mathfrak{p}) = \mathfrak{q} = \mathfrak{p} \cap S_0$, and for basic open set $D(a) \subset \operatorname{Spec} S_0$, define $f_{D(a)}^{\sharp}: \mathcal{O}_{S_0}(D(a)) = (S_0)_a \longrightarrow \mathcal{O}(f^{-1}(D(a)))$ by:

$$f_{D(a)}^{\sharp}:(S_{0})_{a}\longrightarrow \mathcal{O}(f^{-1}(D(a)))$$

$$b/a^{m}\mapsto \begin{pmatrix} f_{D(a)}^{\sharp}(b/a^{m}):f^{-1}(D(a))\rightarrow\coprod S_{(\mathfrak{p})}\\ \mathfrak{q}\mapsto b/a^{m} \end{pmatrix}.$$

This f^{\sharp} induces a ring homomorphism of stalks(local rings):

$$(\mathcal{O}_{S_0})_{\mathfrak{q}} = (S_0)_{\mathfrak{q}} \xrightarrow{f_{\mathfrak{q}}^{\sharp}} \mathcal{O}_{\mathfrak{p}} = S_{(\mathfrak{p})}$$
$$b/f \mapsto b/f.$$

Since, $\mathfrak{q} = \mathfrak{p} \cap S_0$, this $f_{\mathfrak{q}}^{\sharp}$ is a local ring homomorphism. Hence, we conclude that $(f, f^{\sharp}) : (\operatorname{Proj} S, \mathcal{O}) \longrightarrow (\operatorname{Spec} S_0, \mathcal{O}_{S_0})$ is a natural morphism of schemes.

Problem20.

Let $I \subset A$ be a homogeneous ideal, and let $I_d \subset I$ be the set of all homogeneous elements in I having degree d. Then, we have

$$I = \bigoplus_{d \ge 0} I_d.$$

Furthermore, any ideal I satisfying this property is homogeneous. To show that \bar{I} is homogeneous, consider $a \in \bar{I}$. By definition of \bar{I} , there is $m \geq 0$ such that $at_i^m \in I$ for all $0 \leq i \leq n$. Write $a = \sum_{d \geq 0} a_d$, where a_d is homogeneous element of degree d. Then, $a_d t_i^m \in I$ since $at_i^m = \sum_{d \geq 0} a_d t_i^m \in I$ with $a_d t_i^m$ having degree d+m, homogeneous. Since this holds for every $0 \leq i \leq n$, we see that $a_d \in \bar{I}$ for every $d \geq 0$. Hence, \bar{I} is homogeneous.

Problem21.

Define $V(I) = \{ \mathfrak{p} \in \text{Proj} A | I \subset \mathfrak{p} \}.$

 \Rightarrow) It suffices to show that I and \bar{I} define the same closed subschemes of Proj A. First, we show the set-theoretic equality $V(I) = V(\bar{I})$. It is clear that $V(I) \supset V(\bar{I})$, since $I \subset \bar{I}$. Let $\mathfrak{p} \in V(I)$ and $a \in \bar{I}$. We claim that $a \in \mathfrak{p}$. By definition of \bar{I} , we have some $m \geq 0$ such that $at_i^m \in I$ for all $0 \leq i \leq n$. Suppose $a \notin \mathfrak{p}$, then we must have $t_i^m \in \mathfrak{p}$ for all i. This forces that the ideal (t_0, \dots, t_n) is contained in \mathfrak{p} . Since $\mathfrak{p} \in \operatorname{Proj} A$, \mathfrak{p} cannot contain (t_0, \dots, t_n) . Thus, we proved our claim, namely, $V(I) \subset V(\bar{I})$. Hence, $V(I) = V(\bar{I})$ follows.

Now, we need to show that $V(I) \simeq \operatorname{Proj}(A/I)$ and $V(\bar{I}) \simeq \operatorname{Proj}(A/\bar{I})$ are isomorphic as schemes. For, we consider the canonical surjection $A/I \longrightarrow A/\bar{I}$ given by $\bar{a} \mapsto \hat{a}$. This induces a surjection of localized rings $(A/I)_{(f)} \longrightarrow (A/\bar{I})_{(f)}$ which associates \bar{a}/f^r to \hat{a}/f^r for homogeneous a, f with deg f > 0 and deg $a = r \deg f$. It will be enough to show that this map is also injective. But if $\hat{a}/f^r = 0$, then $f^m a \in \bar{I}$. There is an integer N such that $t_0^N f^m a, \dots, t_n^N f^m a \in I$ and for k large enough $f^k a \in I$, so $\bar{a}/f^r = 0$ in $(A/I)_{(f)}$.

 \Leftarrow) Suppose I,J define the same closed subschemes of ProjA. Then, we have $(A/I)_{(f)} \simeq (A/J)_{(f)}$ for any homogeneous element $f \in A^+$ via $\bar{a}/f^r \mapsto \hat{a}/f^r$. By the way, $a \in \bar{J}$ if and only if there is m such that $at_i^m \in J$ for all i. This means that $\hat{a}=0$ in $(A/J)_{(t_i)}$ for each i. By the isomorphism, we have $\bar{a}=0$ in $(A/I)_{(t_i)}$ for each i. Again, this is equivalent to $at_i^{m_i} \in I$ for some m_i . Taking maximum of m_i , we obtain that $a \in \bar{I}$. Hence, $a \in \bar{J} \Leftrightarrow a \in \bar{I}$, giving that $\bar{I}=\bar{J}$.