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1.1 Let A = k[[T ]] be the ring of formal power series with coefficients in a field k.
Determine SpecA.

Proof. We begin with a claim that A× = {
∑
aiT

i ∈ A : ai ∈ k, and a0 ∈ k×}.
Let

∑
aiT

i ∈ A×, then there exists
∑
biT

i ∈ A such that (
∑
aiT

i)(
∑
biT

i) = 1.
The constant term in both side should agree, so we have a0b0 = 1, giving that
a0 ∈ k×. Conversely, let a0 ∈ k×. By multiplying a−1

0 , we can assume that a0 = 1.
Let g = −

∑
i≥1 aiT

i, then we have
∑
aiT

i = 1 − g. The formal power series for∑
i≥0 g

i is the desired inverse for
∑
aiT

i. Thus, our claim is proved.

Let P ⊂ A be a nonzero prime ideal in A. Denote the number min{n ∈ ℕ :
Tn ∈ P} by n(P ). By our previous claim, we have n(P ) ≥ 1, and we also have
Tn(P ) ∈ P . n(P ) ≥ 2 cannot happen because P is a prime ideal. Thus, we must
have n(P ) = 1, i.e. T ∈ P . It follows that P = (T ). Hence SpecA = {(0), (T )}. □

1.2 Let ' : A −→ B be a homomorphism of finitely generated algebras over a field
k. Show that the image of a closed point under Spec' is a closed point.

Proof. Let m be a maximal ideal in B, it suffices to show that Spec'(m) = '−1(m)
is a maximal ideal in A. By 1st isomorphism theorem, ' induces an embedding
A/'−1(m) ↪→ B/m. Then Weak Nullstellensatz shows that B/m is a finite field
extension of k. It follows that A/'−1(m) is an integral domain which is finite
dimensional k-vector space. For any a ∈ (A/'−1(m))∖{0}, the set {1, a, a2, ⋅ ⋅ ⋅ } is
linearly dependent over k. Thus, a satisfies a polynomial equation

∑
i≤N cia

i = 0

with ci ∈ k and c0 ∕= 0. This implies that a
∑

1≥i≥N cia
i−1 = −c0 ∈ k×. Hence a

is invertible in A/'−1(m), giving that A/'−1(m) is a field. □

1.3 Let k = ℝ be the field of real numbers. Let A = k[X,Y ]/(X2 + Y 2 + 1). We
wish to describe SpecA. Let x, y be the respective images of X,Y in A.

(a) Let m be a maximal ideal of A. Show that there exist a, b, c, d ∈ k such that
x2 + ax + b, y2 + cy + d ∈ m. Using the relation x2 + y2 + 1 = 0, show that m
contains an element f = �x + �y + 
 with (�, �) ∕= (0, 0). Deduce from this that
m = fA.

Proof. Note that A/m = ℂ. This is because it is a finite extension of k by Weak
Nullstellensatz, and it contain x, y with x2 + y2 + 1 = 0. Thus, it is clear that x, y
satisfy some quadratic equation over k. We add up those quadratic equations to
obtain

ax+ cy + b+ d− 1 = 0 ∈ A/m.
(Case1) (a, c) ∕= (0, 0): We may take f = ax+ cy + b+ d− 1 ∈ m.
(Case2) a = c = 0, and hence b+d = 1: Either x, y ∈ A/m are both pure imaginary,
or one of them is real. Note that x, y are not both 0. Thus, we can find �, �, 
 such
that �x+ �y + 
 = 0 ∈ A/m.
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We now consider A/fA, assume that f = �x+ �y + 
 with � ∕= 0. Then A/fA
becomes

k[X,Y ]/(X2 + Y 2 + 1, f) = k[X]/(X2 + ((−�/�)x− 
/�)2 + 1) = ℂ.

Therefore, fA is a maximal ideal in A, and combined with fA ⊂ m, we have
m = fA. □

(b) Show that the map (�, �, 
) 7→ (�x+�y+
)A establishes a bijection between
the subset ℙ(k3)∖{(0, 0, 1)} of the projective space ℙ(k3) and the set of maximal
ideals of A.

Proof. The same argument that we showed m = fA in part (a), shows that the
map is well-defined. Moreover, part (a) itself shows surjectivity. Suppose that two
distinct members (�, �, 
) and (�′, �′, 
′) in ℙ(k3)∖{(0, 0, 1)} map to the same max-
imal ideal m in A. We may consider the following cases without loss of generality,
(Case1) � = �′ = 1, � = �′, 
 ∕= 
′: This gives a contradiction, since 
−
′ ∈ k×∩m
cannot hold.
(Case2) � = �′ = 1, � ∕= �′: By subtraction, we obtain a real number y0 such that
y0 ∈ A/m. Plugging in y = y0, we obtain a real number x0 such that x0 ∈ A/m.
Furthermore, x2

0 + y2
0 + 1 = 0 must hold, which is a contradiction.

(Case3) � = 1, � = 0, �′ = 0, �′ = 1: This also give two real numbers x0, y0 ∈ A/m
with x2

0 + y2
0 + 1 = 0, which is a contradiction. Hence, the map is injective. □

(c) Let p be a non-maximal prime ideal of A. Show that the canonical homomor-
phism k[X] −→ A is finite and injective. Deduce from this that p ∩ k[X] = 0. Let
g ∈ p, and let gn + an−1g

n−1 + ⋅ ⋅ ⋅+ a0 = 0 be an integral equation with ai ∈ k[X].
Show that a0 = 0. Conclude that p = 0.

Proof. The homomorphism k[X] −→ A is injective, since its kernel is k[X]∩ (X2 +
Y 2 + 1) = 0. It is clear that A is an integral extension of k[X]. It is also true that
A/p is an integral extension of k[X]/p ∩ k[X]. They are both integral domains.
Since A/p is not a field, k[X]/p ∩ k[X] is not a field. In k[X], only non-maximal
prime ideal is (0). Thus, p ∩ k[X] = 0.

Suppose p contains a nonzero member g. Choose the integral equation for g with
minimal degree n. From the integral equation, we have a0 ∈ p∩k[X]. Thus a0 = 0.
Dividing g gives another integral equation for g with degree n−1. This contradicts
minimality of n. Hence, p must be 0. □

1.8 Let ' : A −→ B be an integral homomorphism.
(a) Show that Spec' : SpecB −→ SpecA maps a closed point to a closed point, and
that any preimage of a closed point is a closed point.

Proof. We use a lemma: A ⊂ B is integral extension, A and B are integral domains.
Then A is a field if and only if B is a field.
Let p ⊂ B be a prime ideal. Then ' induces an embedding A/'−1(p) ↪→ B/p. Since
A/'−1(p) and B/p are both integral domains, the lemma applies. Thus, A/'−1(p)
is a field if and only if B/p is a field. Equivalently, '−1(p) is a closed point(i.e.
maximal ideal) if and only if p is a closed point. □

(b) Let p ∈ SpecA. Show that the canonical homomorphism Ap −→ B ⊗A Ap is
integral.
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Proof. It is enough to show that any simple tensor b ⊗A a is integral over Ap.
Consider an integral equation for b, namely

∑
i≤n aib

i = 0 with ai ∈ A, a0 ∕= 0, and

an = 1. Then clearly, (
∑
i≤n aib

i) ⊗A a = 0. This implies
∑
i≤n ai(b ⊗A a)i = 0.

Hence b⊗A a is integral over Ap. □

(c) Let T = '(A∖p). Let us suppose that ' is injective. Show that T is a
multiplicative subset of B, and that B ⊗A Ap = T−1B ∕= 0. Deduce from this that
Spec' is surjective if ' is integral and injective.

Proof. Let '̄ be the canonical homomorphism in part (b). Note that if q′ ∈
MaxT−1B, then '̄−1(q′) is a maximal ideal in Ap. In fact, '̄−1(q′) = pAp, since
Ap is a local ring. Consider the diagram,

A
' - B

=

Ap

�

?
'̄ - T−1B

�

?

Apply Spec(−) to this diagram,

SpecT−1B
Spec'̄ - SpecAp

=

SpecB

Spec�

?
Spec' - SpecA

Spec�

?

By commutativity, we have

Spec� ∘ Spec'̄(q′) = Spec' ∘ Spec�(q′) = p.

Hence, Spec' is surjective. □

1.9 Let A be a finitely generated algebra over a field k.
(a) Let us suppose that A is finite over k. Show that SpecA is a finite set, of

cardinality bounded from above by the dimension dimkA of A as a vector space.
Show that every prime ideal of A is maximal.

Proof. Suppose that we could find r = dimkA+1 distinct maximal ideals m1, ⋅ ⋅ ⋅ ,mr.
Then, mi+mj = A for i ∕= j. We can construct a strictly descending chain of ideals
m1 ⊋ m1m2 ⊋ ⋅ ⋅ ⋅ ⊋ m1m2 ⋅ ⋅ ⋅mr. This makes a strictly increasing chain of k-
vector spaces A/m1 ⊊ A/m1m2 ⊊ ⋅ ⋅ ⋅ ⊊ A/m1m2 ⋅ ⋅ ⋅mr. However, this implies that
r ≤ dimkA/m1m2 ⋅ ⋅ ⋅mr ≤ dimkA = r − 1, which leads to a contradiction. Hence,
the number of distinct maximal ideals in A is bounded above by dimkA.

Now, we show that every prime ideal p in A is indeed maximal. A/p is an integral
domain which is finite dimensional k-vector space. For any a ∈ (A/p)∖{0}, the set
{1, a, a2, ⋅ ⋅ ⋅ } is linearly dependent over k. Thus, a satisfies a polynomial equation∑
i≤N cia

i = 0 with ci ∈ k and c0 ∕= 0(This is possible, since A/p is an integral

domain). This implies that a
∑

1≥i≥N cia
i−1 = −c0 ∈ k×. Hence a is invertible in

A/p, giving that A/p is a field. □

(b) Show that Speck[T1, ⋅ ⋅ ⋅ , Td] is infinite if d ≥ 1.
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Proof. We begin with proving that Speck[T ] is infinite. If k is infinite, then (T −a)
is maximal ideal for any a ∈ k, thus Speck[T ] is infinite. If k is finite, still we have
k̄ is infinite. This implies that there are infinitely many irreducible polynomials in
k[T ], thus Speck[T ] is infinite in this case too.

For the case d ≥ 2, we define an injective function given by

Speck[T1] −→ Speck[T1, ⋅ ⋅ ⋅ , Td]
(p(T1)) 7→ (p(T1), T2, ⋅ ⋅ ⋅ , Td)

Hence, Speck[T1, ⋅ ⋅ ⋅ , Td] is infinite if d ≥ 1. □

(c) Show that SpecA is finite if and only if A is finite over k.

Proof. (⇐ ) This is done in part (a).
(⇒ ) Suppose that A is infinite over k. Then A is transcendental over k. Noether
Normalization Theorem applies to obtain T1, ⋅ ⋅ ⋅ , Td which are algebraically inde-
pendent over k, and an integral extension k[T1, ⋅ ⋅ ⋅ , Td] ⊂ k[T1, ⋅ ⋅ ⋅ , Td, td+1, ⋅ ⋅ ⋅ , tr] =
A. Similarly as in (b), we can form an injective map

Speck[T1, ⋅ ⋅ ⋅ , Td] −→ Speck[T1, ⋅ ⋅ ⋅ , Td, td+1, ⋅ ⋅ ⋅ , tr]
P 7→ P + (td+1, ⋅ ⋅ ⋅ , tr).

By part (b), it follows that SpecA is infinite. □

2.2 Let ℱ be a sheaf on X. Let s, t ∈ ℱ(X). Show that the set of x ∈ X such that
sx = tx is open in X.

Proof. Let x ∈ X, and sx = tx. Then there exists an open neighborhood Ux of x
such that s∣Ux

= t∣Ux
. For any y ∈ Ux, consider the natural map ℱ(X) −→ ℱy.

Since this natural map is given by a ∈ ℱ(X) 7→ [X, a] where [X, a] denotes the
equivalence class represented by (X, a). But, s∣Ux

= t∣Ux
implies that sy = [X, s] =

[Ux, s∣Ux
] = [Ux, t∣Ux

] = [X, t] = ty. Hence, the set of x ∈ X such that sx = tx is
open in X. □

2.7 Let B be a base of open subsets on a topological space X. Let ℱ ,G be two
sheaves on X. Suppose that for every u ∈ B there exists a homomorphism �(U) :
ℱ(U) −→ G(U) which is compatible with restrictions. Show that this extends in
a unique way to a homomorphism of sheaves � : ℱ −→ G. Show that if �(U) is
surjective(resp. injective) for every U ∈ B, then � is surjective (resp. injective).

Proof. Note that every open set U ⊂ X is a union of members in B, say U = ∪iUi,
where Ui ∈ B. Let �i ∈ ℱ(Ui), and �j ∈ ℱ(Uj), and �i∣Ui∩Uj

= �j ∣Ui∩Uj
for

all i, j, which data uniquely determine � ∈ ℱ(U)(∵ ℱ is a sheaf). We know that
gi = �(Ui)(�i) ∈ G(Ui), gj = �(Uj)(�j) ∈ G(Uj), and �(Ui ∩ Uj)(�i∣Ui∩Uj ) =
�(Ui ∩ Uj)(�j ∣Ui∩Uj ) ∈ G(Ui ∩ Uj). Since the homomorphism � is compatible with
restrictions on members of B, we have

gi∣Ui∩Uj
= �(Ui ∩ Uj)(�i∣Ui∩Uj

) = �(Ui ∩ Uj)(�j ∣Ui∩Uj
) = gj ∣Ui∩Uj

.

Thus, this data uniquely determine g ∈ G(U)(∵ G is a sheaf). Define �(U)(�) = g,
then this is the unique extension to a homomorphism of sheaves � : ℱ −→ G.

We use the fact that sequence of sheaves ℱ −→ G −→ ℋ is exact if and only
if ℱx −→ Gx −→ ℋx is exact for each x ∈ X. In fact, �(U) is surjective(resp.
injective) for every U ∈ B imply ℱx −→ Gx −→ 0(resp. 0 −→ ℱx −→ Gx) is exact
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for each x ∈ X. This in turn, implies that ℱ −→ G −→ 0(resp. 0 −→ ℱ −→ G) is
an exact sequence in sheaves. Hence � is surjective(resp. injective). □

2.11 Let X,Y be two ringed topological spaces. We suppose given an open cov-
ering {Ui}i of X and morphisms fi : Ui −→ Y such that fi∣Ui∩Uj = fj ∣Ui∩Uj (as
morphisms) for every i, j. Show that there exists a unique morphism f : X −→ Y
such that f ∣Ui

= fi. This is the glueing of the morphisms fi.

Proof. We define f : X −→ Y by f(x) = fi(x) where x ∈ Ui for some i. The
glueing data fi∣Ui∩Uj

= fj ∣Ui∩Uj
gives that f : X −→ Y is a continuous function.

Moreover, continuous function with this property has to be unique.

The morphism of sheaves f#
i : OY −→ fi∗OUi

gives the ring homomorphism

f#
i (V ) : OY (V ) −→ OUi

(f−1
i (V )) = OX(f−1(V )∩Ui). The glueing data gives that

fi∣#Ui∩Uj
(V ) : OY (V ) −→ OX(f−1(V )∩Ui∩Uj) = fj ∣#Ui∩Uj

(V ) : OY (V ) −→ OX(f−1(V )∩Ui∩Uj).

Together with the compatibility of restriction, � ∈ OY (V ) 7→ ai ∈ OX(f−1(V )∩Ui)
has the glueing data ai∣Ui∩Uj

= aj ∣Ui∩Uj
. Since OX(f−1(V ) ∩ −) is a sheaf, we

obtain a unique a ∈ OX(f−1(V )) such that a∣Ui = ai for each i. Define f# : OY −→
f∗OX by � ∈ OY (V ) 7→ a ∈ OX(f−1(V )). Then (f, f#) : (X,OX) −→ (Y,OY ) is
the desired morphism of ringed topological spaces. □

3.19 Let K be a number field. Let OK be the ring of integers of K. Using the
finiteness theorem of the class group cl(K), show that every open subset of SpecOK
is principal. Deduce from this that every open subscheme of SpecOK is affine.

Proof. Let U be an open subset of SpecOK , then (SpecOK)∖U = V (I) for some
ideal I ⊂ OK . This ideal I belongs to an ideal class [Q] ∈ cl(K). Thus, there are
a, b ∈ OK∖{0} such that aI = bQ. This implies that I = (b/a)Q, and there is some
n ≥ 0 such that In = (b/a)nQn = 
OK for some 
 ∈ K (In particular, we can take
n = #cl(K)). Since In ⊂ OK , we have 
OK ⊂ OK . This proves that 
 ∈ OK , and
that In is a principal ideal. Hence, V (I) = V (In) = V (
OK) is a principal closed
subset, or equivalently, U = D(
) is a principal open set.

Therefore, every open subscheme U = D(
) of SpecOK is isomorphic to SpecOK [1/
],
which is affine. □

4.1 Let k be a field and P ∈ k[T1, ⋅ ⋅ ⋅ , Tn]. Show that Spec(k[T1, ⋅ ⋅ ⋅ , Tn]/(P )) is
reduced (resp. irreducible; resp. integral) if and only if P has no square factor
(resp. admits only one irreducible factor; resp. is irreducible).

Proof. Let A = k[T1, ⋅ ⋅ ⋅ , Tn]/(P ), and q ∈ SpecA. Then the following are equiva-
lent:
(1) OA,q = Aq is reduced for all q ∈ SpecA.
(2) Only nilpotent element in Aq is 0.
(3) ∩{q′ ∈ Speck[T1, ⋅ ⋅ ⋅ , Tn] : (P ) ⊂ q′ ⊂ q} = (P ).
(4) P has no square factor.
Equivalence of (1),(2), and (3) is direct from definition. We show the equivalence
of (3), and (4). This follows from

∩{q′ ∈ Speck[T1, ⋅ ⋅ ⋅ , Tn] : (P ) ⊂ q′ ⊂ q} = (P0),

where P0 is the product of all irreducible factors of P .
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Remark that SpecA ∕= ∅ is irreducible if and only if
√

(0) is prime. Equivalently,

∩{q′ ∈ Speck[T1, ⋅ ⋅ ⋅ , Tn] : (P ) ⊂ q′} = (P0)

is prime. Similarly as before, P0 is the product of all irreducible factors of P . Now,
(P0) is prime if and only if there is only one irreducible factor in P .
A is integral if and only if A is both reduced and irreducible. Therefore, A is

integral if and only if P has no square factor and admits only one irreducible factor,
i.e. P is irreducible.

□


