
210C FINAL EXAM

KIM, SUNGJIN

Problem1.
⇐) We do this in two steps:
(1) If A has a composition series, then A is noetherian and artinian.
(2) A has an A-composition series.

Proof of (1).
Suppose A has a composition series S of length n. If either chain condition fails to
hold, one can find submodules

A = A0 ) A1 ) A2 ) · · · ) An ) An+1,

which form a normal series T of length n + 1. By Shreier’s theorem, S and T
have refinements that are equivalent. This is a contradiction since S has length n,
and refinement of T has length at least n + 1. Therefore, A satisfies both chain
conditions.
Proof of (2).
Using the fact that A is noetherian, any ideal of A contains a finite product of prime
ideals. In particular, the ideal (0) contains a finite product m1 · · ·mn of prime ideals
m1, · · · ,mn which are also maximal ideals. Thus, we have a filtration

0 = m1 · · ·mn ⊂ m1 · · ·mn−1 ⊂ · · · ⊂ m1 ⊂ A.
Each quotient m1 · · ·mi/m1 · · ·mi+1 is a finitely generated module over a field
A/mi+1, and therefore has an A-composition series. It follows that A-module A
has an A-composition series, so A is artinian by (1).

⇒) We do this in two steps:
(3) Left artinian DOES imply left noetherian for noncommutative rings too.
(4) If A is an artinian commutative ring, then Spec(A) = Max(A).

Proof of (3).
Note that if A is artinian, then Ā = A/Rad(A) is semisimple, and Rad(A) is
nilpotent.(cf. Homework6 Problem4.) For J = Rad(A), fix n such that Jn = 0.
Consider the filtration

A ⊃ J ⊃ J2 ⊃ · · · ⊃ Jn = 0.
It is enough to show that J i/J i+1 has a composition series. But J i/J i+1 is artinian
as module over Ā. Since Ā is semisimple, J i/J i+1 is semisimple Ā-module, so it is a
direct sum of simple Ā-modules. The chain condition on J i/J i+1 implies that this
direct sum must be finite, so J i/J i+1 does have a composition series as Ā-module.
Hence, A has a composition series as A-module. By (1), it follows that A is left
noetherian.
Proof of (4).
Let p ⊂ A be a prime ideal of A. Then A/p is an integral domain. Thus, it is

1



2 KIM, SUNGJIN

enough to show that artinian integral domain is a field. Let a ∈ A/p be a nonzero
element. Consider a chain of ideals in A/p,

(a) ⊃ (a2) ⊃ · · · .

Since A/p is artinian, this chain has to stop, say (an) = (an+1). Then an = ban+1

for some b ∈ A/p. This implies that an(1 − ba) = 0. Since an 6= 0, we must have
1− ba = 0. Hence A/p is a field.

Problem2.
A fractional ideal I is a nonzero A-submodule I such that aI ⊂ A for some nonzero
a ∈ A. Let J be a fractional ideal in A. Denote

J−1 = {a ∈ K|aJ ⊂ A}.

Let P be the unique nonzero prime ideal in A. Since A is local, we have P = m. It
is enough to show that A is a PID. This require the following facts.
(1) Let K be the quotient field of A, for a fractional ideal I in A, then

Ī = {a ∈ K|aI ⊂ I} = A.

(2) A ( P−1.
(3) P is invertible.
(4) ∩n≥0P

n = 0.
(5) P is principal.

We assume (1),· · · , (5), let I be a proper ideal in A. Then I ⊂ P . By (4), we can
find N such that I ⊂ PN , and I * PN+1. By (5), there is a ∈ A such that P = (a).
We see that I ⊂ PN = (aN ). Choose b ∈ I − PN+1. Since b ∈ PN , we can find
u ∈ A such that b = uaN . It follows that u has to be a unit in A, otherwise we
would have u ∈ P , and b ∈ PN+1. Thus, (aN ) = (uaN ) = (b) ⊂ I, and we obtain
I = (aN ).

Proof of (1).
The inclusion ⊇ is obvious. Since Ī is a fractional ideal, it is isomorphic to some
ideal in A. So, Ī is finitely generated A-module, since A is noetherian. This means
that every x ∈ Ī is integral over A. Since A is integrally closed, x ∈ A. Thus, we
obtain that Ī = A.
Proof of (2).
For any ideal J ⊂ A, we have A ⊂ J−1. Let F be a family of all ideals J such
that A ( J−1. Choose a nonzero a ∈ P , then we know that a is nonunit, and let
J = (a). Then 1/a ∈ J−1, but 1/a /∈ A. So, the family F is nonempty. Since A is
noetherian, we can find a maximal element M in the family F . We claim that M
is a prime ideal. For, assume that ab ∈M but a /∈M . Choose c ∈M−1 −A, then
cab ∈ A, hence bc(aA+M) ⊂ A, giving that bc ∈ (aA+M)−1. By maximality of
M , we have bc ∈ A. Thus, c(bA + M) ⊂ A, which implies c ∈ (bA + M)−1. Since
c /∈ A, and again by maximality of M , we have bA + M = M . Hence b ∈ M , and
M is a prime ideal. By uniqueness, we must have M = P . Therefore, A ( P−1.
Proof of (3).
Clearly P ⊂ PP−1 ⊂ A. Since A is local, PP−1 = P or A. But if PP−1 = P then
A ( P−1 ⊂ P̄ = A, by (1) and (2). This is a contradiction. Hence PP−1 = A.
Proof of (4).
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This is a consequence of Artin-Rees Lemma, and Nakayama Lemma. (cf. Home-
work3 Problem1).
Proof of (5).
Choose a ∈ P − P 2(possible by (4)). Then aP−1 is a nonzero ideal in A such
that aP−1 * P . Since every proper ideal of A is contained in P , we must have
aP−1 = A. Hence, (a) = aA = aP−1P = AP = P by (3).

Problem3.
(charK = 0) We start with a fixed subfield F of the complex field K. Let µ be
an irreducible character afforded by a simple KG-module M . Let F (µ) be the
field obtained by adjoining all µ(g) for g ∈ G. Consider those fields S such that
F ⊂ S ⊂ K for which there exists a SG-module V such that

M ' K ⊗S V.

For such field S, any S-basis for V becomes a K-basis for M . In this case, we say
that M affords a representation realizable in S. In particular, the matrix entries of
this representation lie in S. Thus, we see that µ(g) ∈ S for all g ∈ G, since each
µ(g) is trace of a matrix in S. Thus, we must have

F (µ) ⊂ S ⊂ K.

The Schur index is defined by

mF (µ) = min(S : F (µ))

where the minimum is taken over all fields S such that M is realizable in S. Then
mF (µ) = mF (µ)(µ). Further, mF (µ) = 1 if and only if M affords a representation
realizable in F (µ).
Let M be an irreducible KG-module. Let S be any subfield of K. Then M is a
direct summand of V K = K ⊗S V . Thus, every irreducible K-representation of G
is realizable in S if and only if S is a splitting field of G. The following holds for
Schur index;
Let M be an irreducible KG-module with character µ, and F be a subfield of K.
Then for each FG-module W , the multiplicity with which M occurs as a factor of
WK is a multiple of mF (µ).

Let F = Q( n
√

1) where n is the exponent of G. Then µ(g) ∈ F for all g ∈ G, so
F (µ) = F . We claim that F is a splitting field of G. We need only to show that
mF (µ) = 1 for each µ. By Brauer’s theorem on induced characters, we may write

µ =
∑

aiw
G
i

where ai ∈ Z, and wi are one dimensional characters of elementary subgroups of
G. (Elementary subgroup is a product of cyclic group and p-group) Now every one
dimensional representation of a subgroup of G is realizable in F . Thus each wGi is
a character some FG-module, and so the multiplicity of µ in each wGi is a multiple
of mF (µ). However, the multiplicity of µ in each wGi is 1. Therefore mF (µ) = 1.
If K contains a primitive n-th root of unity, then by tensoring with K, we obtain
that K is a splitting field of G.

Problem4.
The character table for G has to contain the following two more rows
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G {1} C2 C3 C4 C5 C6 C7

tr 1 1 1 1 1 1 1
χ2

1 1 1 1 w w2 w w2

Since the character table contains a 2-dimensional irreducible representation, it has
to contain two more rows (by multiplying with 1-dimensional irreducible represen-
tations)

G {1} C2 C3 C4 C5 C6 C7

χ1χ2 2 −2 0 −w2 −w w2 w
χ2

1χ2 2 −2 0 −w −w2 w w2

Thus, we have the following table so far, (0 on the last row comes from orthogonality
with the first column.)

G {1} C2 C3 C4 C5 C6 C7

tr 1 1 1 1 1 1 1
χ2

1 1 1 1 w w2 w w2

χ1 1 1 1 w2 w w2 w
χ2 2 −2 0 −1 −1 1 1
χ1χ2 2 −2 0 −w2 −w w2 w
χ2

1χ2 2 −2 0 −w −w2 w w2

χ3 e f g 0 0 0 0
Let a = |C4|, b = |C5|, c = |C6|, and d = |C7|. Then by orthogonality relations of
the first row and the second, third, we have

wa+ w2b+ wc+ w2d = w2a+ wb+ w2c+ wd.

This implies a+ c = b+ d. We use orthogonality relations of the first row and the
fourth, fifth, we have

−a− b+ c+ d = −w2a− wb+ w2c+ wd.

This implies (−a + c)(1 − w2) = (−b + d)(w − 1). This forces a = c, b = d, and
together with the above equation, we have a = b = c = d.
The orthogonality relation of the first column and the third column, we obtain e|3.
Thus e = 1 or e = 3. But, e = 1 gives |G| = 16. Since the character table contains
w, G must contain some element having order k with 3|k. Therefore, we must have
e = 3. Then by orthogonality of the first column and the second column, we have
f = 3, g = −1. Now, we have that |G| = 12 + 12 + 12 + 22 + 22 + 22 + 32 = 24.
The orthogonality relation of the first and fourth rows, we obtain |C2| = 1. The
orthogonality of the first and last rows give |C3| = 6. Since we have a = b = c = d,
comparing with the order of G gives a = b = c = d = 4. Hence, the character table
is

G {1} C2 C3 C4 C5 C6 C7

tr 1 1 1 1 1 1 1
χ2

1 1 1 1 w w2 w w2

χ1 1 1 1 w2 w w2 w
χ2 2 −2 0 −1 −1 1 1
χ1χ2 2 −2 0 −w2 −w w2 w
χ2

1χ2 2 −2 0 −w −w2 w w2

χ3 3 3 −1 0 0 0 0
The information on G is so far,
(a) |G| = 24.
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(b) G has 7 conjugacy classes.
(c) The sizes of conjugacy classes are 1,1,6,4,4,4,4.

To determine the group G, we use the list of all groups of order 24.
(1) Z/24Z
(2) Z/12Z× Z/2Z
(3) Z/6Z× Z/2Z× Z/2Z
(4) S4

(5) SL2(Z/3Z)
(6) D24

(7) Z/2Z×A4

(8) Z/2Z×D12

(9) Z/2Z× T (T is tetrahedron symmetry.)
(10) Z/3Z×D8

(11) Z/3Z×Q8

(12) Z/4Z× S3

(13) Z/3Z o Z/8Z
(14) Z/3Z oφ D8 where Ker(φ) = V .
(15) Z/3Z oQ8

From (a),(b) above, we know that G is not abelian. So, we exclude (1),(2),(3).
Since S4 has 5 conjugacy classes, we exclude (4). Since D24 has a conjugacy class
having size 2, we exclude (6). The number of conjugacy classes is 7 which is a
prime number. Thus, we must exclude all groups which are direct product of cyclic
group and another group. So, (7),· · · , (12) are excluded. Using the multiplicative
structure of semidirect product, we obtain that (13),(14),(15) have a conjugacy
class of size 2. The only thing remains is (5), SL2(Z/3Z).
We have a general result about the conjugacy classes of SL2(Fq), where q is odd.

Representative no.of classes size of class(
±1 0
0 ±1

)
2 1(

±1 1
0 ±1

)
2 (q−1)(q+1)

2±1 ε
0 ±1


,for some fixed ε/∈(F×q )2

2 (q−1)(q+1)
2

a 0
0 a−1


a∈F×q −{±1}

q−3
2 q(q + 1)

0 −1
1 α


p(t)=t2−αt+1∈Fq [t] is irreducible.

q−1
2 q(q − 1)

From this, we can verify that SL2(Z/3Z) has 7 conjugacy classes having sizes
1,1,6,4,4,4,4. Further, there is only one way to express 24 as the sum of 1 and 6
other squares, namely 12 + 12 + 12 + 22 + 22 + 22 + 32. The Artin-Wedderburn
decomposition for CSL2(Z/3Z) is

CSL2(Z/3Z) = C× C× C×M2(C)×M2(C)×M2(C)×M3(C).
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Hence the group SL2(Z/3Z) must have the same 7 by 7 character table as above.

Problem5.
• Solution of Cubic Equations by Radicals:
Consider a cubic polynomial f(x) = x3 +ax2 +bx+c. By substitution x = y−a/3,
we have f(x) = g(y) = y3 + py + q, where

p =
1
3

(3b− a2), q =
1
27

(2a3 − 9ab+ 27c).

Let α, β, γ be all roots of g(y) = 0. We want to express roots of g(y) = 0 in the
form A+B where −3AB = p. Using A3 +B3 = (A+B)3−3AB(A+B), we obtain

A3 +B3 = −q.

Also, we have A3B3 = −p
3

27 . Thus, A3, and B3 are roots of the quadratic

t2 + qt− p3

27
= 0.

From the formula for solution of quadratic equations,

A3 =
−q +

√
q2 + 4

27p
3

2

B3 =
−q −

√
q2 + 4

27p
3

2
.

Choosing appropriate cubic roots of RHS which has to satisfy −3AB = p, we obtain
that

α = A+B, β = wA+ w2B, γ = w2A+ wB.

where w = exp(2πi/3).

• Solution of Quartic Equations by Radicals:
Consider a quartic polynomial f(x) = x4 + ax3 + bx2 + cx + d. By substitution
x = y − a/4, we have f(x) = g(y) = y4 + py2 + qy + r, where

p =
1
8

(−3a2 + 8b)

q =
1
8

(a3 − 4ab+ 8c)

r =
1

256
(−3a4 + 16a2b− 64ac+ 256d).

Let α, β, γ, δ be all roots of g(y) = 0. Add (ly+m)2 to the equation g(y) = 0, then
we obtain

y4 + py2 + qy + r + (ly +m)2 = (ly +m)2.

We use (y2 + λ)2 = y4 + 2λy2 + λ2, to complete the square of LHS above, which is

y4 + (p+ l2)y2 + (q + 2lm)y + r +m2 = (ly +m)2.

Comparing the coefficient,

2λ = p+ l2, q + 2lm = 0, r +m2 = λ2.

Then, it follows that

(2λ− p)(λ2 − r) =
q2

4
.
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Since this is a cubic equation for λ, let λ be a real root for this cubic equation,
which can be solved by radicals. Then we have

(y2 + λ)2 = (ly +m)2

where l =
√

2λ− p, and m =
√
λ2 − r. Now, we reduced the quartic to two

quadratics, y2 + λ = ly + m, and y2 + λ = −ly −m. Hence, the general solution
for g(y) = 0 is

α =
l +
√
l2 − 4(λ−m)

2
, β =

l −
√
l2 − 4(λ−m)

2
,

γ =
−l +

√
l2 − 4(λ+m)

2
, δ =

−l −
√
l2 − 4(λ+m)

2
.


