210C FINAL EXAM

KIM, SUNGJIN

Probleml.

<) We do this in two steps:

(1) If A has a composition series, then A is noetherian and artinian.
(2) A has an A-composition series.

Proof of (1).
Suppose A has a composition series S of length n. If either chain condition fails to
hold, one can find submodules

A:AOQAIQAQQ"'QAnQA’rH-h

which form a normal series T' of length n 4+ 1. By Shreier’s theorem, S and T
have refinements that are equivalent. This is a contradiction since S has length n,
and refinement of 7" has length at least n 4+ 1. Therefore, A satisfies both chain
conditions.

Proof of (2).

Using the fact that A is noetherian, any ideal of A contains a finite product of prime
ideals. In particular, the ideal (0) contains a finite product my - - - m,, of prime ideals
my, -+ ,m, which are also maximal ideals. Thus, we have a filtration

O=m;--m, Cmy---m,_1 C---Cmy CA.

Each quotient mj---m;/m;---m;y; is a finitely generated module over a field
A/m;;q, and therefore has an A-composition series. It follows that A-module A
has an A-composition series, so A is artinian by (1).

=) We do this in two steps:
(3) Left artinian DOES imply left noetherian for noncommutative rings too.
(4) If A is an artinian commutative ring, then Spec(A) = Max(A).

Proof of (3).
Note that if A is artinian, then A = A/Rad(A) is semisimple, and Rad(A) is
nilpotent.(cf. Homework6 Problem4.) For J = Rad(A), fix n such that J" = 0.
Consider the filtration

A>J>J*>---DJ"=0.
It is enough to show that J¢/J**! has a composition series. But J*/J*! is artinian
as module over A. Since A is semisimple, J?/Ji*1 is semisimple A-module, so it is a
direct sum of simple A-modules. The chain condition on J?/Ji*! implies that this
direct sum must be finite, so J¢/J*! does have a composition series as A-module.
Hence, A has a composition series as A-module. By (1), it follows that A is left
noetherian.
Proof of (4).
Let p C A be a prime ideal of A. Then A/p is an integral domain. Thus, it is
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enough to show that artinian integral domain is a field. Let a € A/p be a nonzero
element. Consider a chain of ideals in A/p,

(a) > (@*) D

Since A/p is artinian, this chain has to stop, say (a™) = (a®*1). Then a™ = ba" !
for some b € A/p. This implies that a(1 — ba) = 0. Since a™ # 0, we must have
1 —ba = 0. Hence A/p is a field.

Problem?2.
A fractional ideal I is a nonzero A-submodule [ such that al C A for some nonzero
a € A. Let J be a fractional ideal in A. Denote

J ' ={ac KlaJ C A}.

Let P be the unique nonzero prime ideal in A. Since A is local, we have P = m. It
is enough to show that A is a PID. This require the following facts.
(1) Let K be the quotient field of A, for a fractional ideal I in A, then

I={aeKlal CI}=A.

(2) AC P L.

(3) P is invertible.

(4) NnsoP™ = 0.

(5) P is principal.

We assume (1),---, (5), let I be a proper ideal in A. Then I C P. By (4), we can
find N such that I C PN, and I ¢ PN+1. By (5), there is a € A such that P = (a).
We see that I € PN = (a”). Choose b € I — PN*!. Since b € PV, we can find
u € A such that b = ua®™. It follows that u has to be a unit in A, otherwise we
would have u € P, and b € PN*1. Thus, (aV) = (ua’¥) = (b) C I, and we obtain
I=(aV).

Proof of (1).

The inclusion D is obvious. Since I is a fractional ideal, it is isomorphic to some
ideal in A. So, I is finitely generated A-module, since A is noetherian. This means
that every = € I is integral over A. Since A is integrally closed, z € A. Thus, we
obtain that I = A.

Proof of (2).

For any ideal J C A, we have A C J~!. Let F be a family of all ideals J such
that A C J~1. Choose a nonzero a € P, then we know that a is nonunit, and let
J = (a). Then 1/a € J=!, but 1/a ¢ A. So, the family F is nonempty. Since A is
noetherian, we can find a maximal element M in the family F. We claim that M
is a prime ideal. For, assume that ab € M but a ¢ M. Choose ¢ € M~! — A, then
cab € A, hence bc(aA + M) C A, giving that be € (aA + M)~!. By maximality of
M, we have bc € A. Thus, ¢(bA + M) C A, which implies ¢ € (bA + M)~L. Since
¢ ¢ A, and again by maximality of M, we have bA + M = M. Hence b € M, and
M is a prime ideal. By uniqueness, we must have M = P. Therefore, A C P~!.
Proof of (3).

Clearly P ¢ PP~! C A. Since A is local, PP~! = P or A. But if PP~! = P then
AC P71 CcP=A by (1) and (2). This is a contradiction. Hence PP~1 = A.
Proof of (4).
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This is a consequence of Artin-Rees Lemma, and Nakayama Lemma. (cf. Home-
work3 Probleml).

Proof of (5).

Choose a € P — P%(possible by (4)). Then aP~! is a nonzero ideal in A such
that aP~' ¢ P. Since every proper ideal of A is contained in P, we must have
aP~! = A. Hence, (a) = aA=aP 1P = AP = P by (3).

Problem3.

(char K = 0) We start with a fixed subfield F' of the complex field K. Let u be
an irreducible character afforded by a simple KG-module M. Let F(u) be the
field obtained by adjoining all u(g) for ¢ € G. Consider those fields S such that
F C S C K for which there exists a SG-module V such that

M~K®gV.

For such field S, any S-basis for V' becomes a K-basis for M. In this case, we say
that M affords a representation realizable in S. In particular, the matrix entries of
this representation lie in S. Thus, we see that u(g) € S for all g € G, since each
1(g) is trace of a matrix in S. Thus, we must have

F(u)c SCK.
The Schur index is defined by

() = min(S : F(p))

where the minimum is taken over all fields S such that M is realizable in S. Then
mp(p) = mp)(p). Farther, mp(u) = 1 if and only if M affords a representation
realizable in F'(u).

Let M be an irreducible KG-module. Let S be any subfield of K. Then M is a
direct summand of VX = K ®g V. Thus, every irreducible K-representation of G
is realizable in S if and only if S is a splitting field of G. The following holds for
Schur index;

Let M be an irreducible K G-module with character p, and F' be a subfield of K.
Then for each F'G-module W, the multiplicity with which M occurs as a factor of
WX is a multiple of mp ().

Let F = Q(3/1) where n is the exponent of G. Then u(g) € F for all g € G, so
F(u) = F. We claim that F is a splitting field of G. We need only to show that
mp(p) = 1 for each . By Brauer’s theorem on induced characters, we may write

Hn= ZaiwiG

where a; € Z, and w; are one dimensional characters of elementary subgroups of
G. (Elementary subgroup is a product of cyclic group and p-group) Now every one
dimensional representation of a subgroup of G is realizable in F. Thus each wiG is
a character some F'G-module, and so the multiplicity of x in each wiG is a multiple
of mp(u). However, the multiplicity of p in each w{ is 1. Therefore mg(u) = 1.
If K contains a primitive n-th root of unity, then by tensoring with K, we obtain
that K is a splitting field of G.

Problem4.
The character table for G has to contain the following two more rows
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G ‘ {1} C» C3 Cy C5 Cs C7
tr | 1 11 1 1 1 1
il 1 1 1 w w w w

2

Since the character table contains a 2-dimensional irreducible representation, it has
to contain two more rows (by multiplying with 1-dimensional irreducible represen-
tations)

G |{1} ¢ ¢ ¢ C5 Cs C;

xixa| 2 -2 0 —w —w w w

Xix2| 2 -2 0 —w —-w? w w?

Thus, we have the following table so far, (0 on the last row comes from orthogonality
with the first column.)

G | {1} Cy C3 C4 Cs Cs Cy
tr 1 1 1 1 1 1 1
X3 11 1w w ow w?
X1 1 1 1 w? wo w? w
X2 2 -2 0 -1 -1 1 1
xix2| 2 -2 0 —w? —w w? w
Xixz2| 2 -2 0 —w —-w? w w?
X3 e f g 0 0 0 0

Let a = |Cy4|, b = |C5], ¢ = |Cg|, and d = |C7|. Then by orthogonality relations of
the first row and the second, third, we have

wa + w2b + we + w?d = w?a + wb + wre + wd.

This implies a + ¢ = b+ d. We use orthogonality relations of the first row and the
fourth, fifth, we have

—a—b+c+d=—-w?a— wb+ w?e+ wd.

This implies (—a + ¢)(1 — w?) = (=b + d)(w — 1). This forces a = ¢, b = d, and
together with the above equation, we have a = b =c =d.

The orthogonality relation of the first column and the third column, we obtain e|3.
Thus e =1 or e = 3. But, e = 1 gives |G| = 16. Since the character table contains
w, G must contain some element having order k with 3|k. Therefore, we must have
e = 3. Then by orthogonality of the first column and the second column, we have
f=3,g=—1. Now, we have that |G| = 12 + 12 + 12 +22 +22 + 22 + 32 = 24.
The orthogonality relation of the first and fourth rows, we obtain |Cy| = 1. The
orthogonality of the first and last rows give |C5| = 6. Since we have a = b= ¢ =d,
comparing with the order of G gives a = b = ¢ = d = 4. Hence, the character table
is

G |{1} Cy C3 C4 Cs Cg Cf
tr 1 1 1 1 1 1 1
X3 1 1 1 w w?  w w?
X1 1 1 1 w? w  w? w
X2 2 -2 0 -1 -1 1 1
xix2| 2 -2 0 —w? —w w? w
XIx2| 2 -2 0 —w —-w? w w?
X3 3 3 -1 0 0 0 0

The information on G is so far,

(a) |G| = 24.
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(b) G has 7 conjugacy classes.
(c) The sizes of conjugacy classes are 1,1,6,4,4,4,4.

To determine the group G, we use the list of all groups of order 24.
) Z)247

Z/127 x 7./27

Z/GZ X ZL)27 X 7./]27

(1

2)
(3)
(4) 8
(5) SLs(2/32)
(6) Doy

(8) Z/2Z X D12
(9) Z/27Z x T (T is tetrahedron symmetry.)
(10) Z/3Z x Ds

(11) Z/3Z x Qs

(12) Z/AZ x S3

(13) Z/37 % Z./SZ.

(14) Z/3Z x4 Dg where Ker(¢) = V.

(15) Z/3Z % Qs

From (a),(b) above, we know that G is not abelian. So, we exclude (1),(2),(3).
Since Sy has 5 conjugacy classes, we exclude (4). Since Doy has a conjugacy class
having size 2, we exclude (6). The number of conjugacy classes is 7 which is a
prime number. Thus, we must exclude all groups which are direct product of cyclic
group and another group. So, (7),---, (12) are excluded. Using the multiplicative
structure of semidirect product, we obtain that (13),(14),(15) have a conjugacy
class of size 2. The only thing remains is (5), SL2(Z/37Z).

We have a general result about the conjugacy classes of SLy(F,), where ¢ is odd.

Representative no.of classes | size of class
+1 0
< 0 ﬁ:l) 2 1
=1 1 9 (g=1)(g+1)
0 +1 2
(il ‘ ) (a=1)(q+1)
—1)(g+1
0 +1 2 %
for some fixed 6¢(IF(>I<>2
a 0 s
0 a! = (g +1)
acFx —{£1}
0 -1 )
1 « 5= q(q—1)
p(t)=t®>—at+1€F,[t] is irreducible.

From this, we can verify that SLo(Z/3Z) has 7 conjugacy classes having sizes
1,1,6,4,4,4,4. Further, there is only one way to express 24 as the sum of 1 and 6
other squares, namely 12 4+ 12 + 12 + 22 4+ 22 4 22 + 32, The Artin-Wedderburn
decomposition for CSLo(Z/3Z) is

CSLy(Z/3Z) = C x C x C x Ma(C) x M3(C) x Ms(C) x M;(C).
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Hence the group SLo(Z/3Z) must have the same 7 by 7 character table as above.

Problem5.
e Solution of Cubic Equations by Radicals:
Consider a cubic polynomial f(z) = 2+ ax? + bz +c. By substitution z = y—a/3,
we have f(z) = g(y) = y> + py + ¢, where
1 2 L o3
= —(3b— = (243 - 27¢).
D 3(3b a®), q 27( a® — 9ab + 27¢)

Let «, 3,7 be all roots of g(y) = 0. We want to express roots of g(y) = 0 in the
form A+ B where —3AB = p. Using A3+ B3 = (A+ B)3 —3AB(A+ B), we obtain

AP+ B =—q.

Also, we have A3B3 = —’2’—?. Thus, A3, and B? are roots of the quadratic

3

P
24 qt— 2 =0.
tat— o

From the formula for solution of quadratic equations,

Jrhs V@& + 3P

2

4
o 1 V@t ﬁp‘"*.
2
Choosing appropriate cubic roots of RHS which has to satisfy —3AB = p, we obtain

that

a=A+B, f=wA+w’B, v=w?A+wB.
where w = exp(27i/3).

e Solution of Quartic Equations by Radicals:
Consider a quartic polynomial f(z) = a* + ax® + ba? + cx + d. By substitution
x =y —a/4, we have f(z) = g(y) = y* +py* + qy +r, where

1
p= é(—Sa2 + 8b)
L3
q= g(a — 4ab + 8c¢)

1
= ﬁ(—3a‘1 + 16a2b — 64ac + 256d).

Let a, 3,7, 6 be all roots of g(y) = 0. Add (ly +m)? to the equation g(y) = 0, then
we obtain

r

v o gyt + (ly +m)? = (ly +m)
We use (y% + \)? = y* + 2\y? + A2, to complete the square of LHS above, which is
v+ (p+ )y + (g + 2im)y +r +m? = (ly +m)*.
Comparing the coefficient,
A=p+1% q+2lm=0, r+m? =\
Then, it follows that
@A—p)(2 - =L
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Since this is a cubic equation for A, let A be a real root for this cubic equation,
which can be solved by radicals. Then we have
(v +A)? = (ly +m)?
where | = 2\ —p, and m = VA2 —r. Now, we reduced the quartic to two
quadratics, y? + X = ly + m, and y> + A = —ly — m. Hence, the general solution
for g(y) =0 is
l 2 —4(\ — I — /12 =4\ —
NI ESVET T Ziee)

2
_ o VEANEm) o /B A m)
_ 5 5= .

2

v



