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Problem]l.
(a) Since E C p <=1 C p, we have V(FE) = V(I). Since p is a prime ideal, 2™ € p
for some n > 1 if and only if z € p, i.e. I C p <= /I C p. Thus, it follows that

V(I)=VH/I).

(b) V({0}) = {p € Spec(A)|0 € p} = Spec(A), and there is no prime ideal that
contains 1, so V({1}) = 0.

(C) UiGAEi Cphp<— E; C p for all i € A. Thus, V(UZGAEZ) = mieAV(EZ').

(d) The proof is just the same as (c), > ;.4 [i Cp <= I; C p for all i € A. Thus,
V(X ieali) =NicaV(L).

(e) Note that V(IJ) > V(INJ) D V(I)UV(J), since IJ C INJ. In fact,
V(IJ) = V(I)UV(J) follows from the property of prime ideals, namely, p D
IJ<=pD>Ilorp>DJ. Hence, V(IJ)=V({INJ)=V({I)UV(J).

(f) Consider C = {V(I)|I is an ideal in A}. By (b), C contains Spec(A4) and 0.
Also, C contains arbitrary intersection by (d), and finite union by (e). Hence, V(1)
form the closed subsets of a topology on Spec(A).

(g) First note that f~1(q) does not contain 1, otherwise q would contain 1. Then
for a,b € A,

abe f~'(q) <= f(ab) € q
> f(a)f(b) €q
< f(a) €qor f(b)€q
—acfHq) orbe f(q).

Hence f~1(q) is a prime ideal in A.

(h) For a commutative ring A, Spec(-):A +— Spec(A). For a ring homomor-
phism f : A — B, Spec(f):Spec(B)— Spec(A) defined by q — f~1(q). Let
f:A— B, g: B— C, be ring homomorphisms and q € Spec(C), then we have
(9/)1(@) = £*(9~"(a))- Thus, Spec(g o f) = Spec(f) o Spec(g). It is clear that
14 : A — A gives Spec(l4) = lgpec(a). Hence Spec(—) is a contravariant functor
from commutative rings to topological spaces.

(i) Consider the inclusion i : Z — Q, (0) is a maximal ideal in @Q, since Q is a
field. However i~1((0)) = (0) C Z is not a maximal ideal in Z since (0) is contained
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in an ideal 2Z in Z.

Problem?2.
(a) Spec(A) — (D(s) N D(t)) = V(sA) UV (tA) = V(stA) by probleml(e). Thus,
V(stA) = Spec(A) — D(st) implies the result D(s) N D(t) = D(st).

(b) The statement is equivalent to 1/(0) = (Mpespec(a) P- Suppose first that a is
nilpotent, then a™ € p for some n > 1 for any prime ideal p. This implies a € p,
thus \/@ C ﬂpespec(A) p. For the other direction, suppose that a is not nilpotent.
Then S = {a™|n > 0} form a multiplicative subset of A not containing 0. We have
S71A # 0, so Spec(S~1A) # (). Thus there is a prime ideal in A which does not
intersect S, in particular, does not contain a.

(c) If s is a unit, then clearly s ¢ p for every p € Spec(A4). Thus, D(s) = Spec(4).
Suppose that s is not a unit. Then there is a maximal ideal m in A that contains
sA. Since maximal ideal is prime, m ¢ D(s), so D(s) # Spec(4).

(d) We prove more general statement: Let I and J be two ideals in a ring A. Then
V() cV(J) = Jc VI

=) V() =VK/I) cV(]).

=) J CNyos P CNporp = V1. The last equality follows from (b) applied to the
ring A/I. Now apply this statement when I = tA, J = sA. Then the result follows.

(e) D(s) = D(¢) if and only if sA C vtA and tA C vsA. This is in fact equivalent
to vVsA = VtA.

Problem3.

(a) The nonzero prime ideals in Z are of the form pZ for some prime number p € Z.
Thus, Spec(Z) = {(0)} U {pZ| p is a prime number in Z}. Every ideals in Z are of
the form nZ for some n € Z. Hence, we have V(nZ) = {pZ|p is a prime divisor of n}
for nonzero, nonunit n, and we have V(Z) =), V((0)) = Spec(Z).

(b) Let P be a nonzero prime ideal in A = Z[X]. Then the natural homomorphism
Z — A/P has kernel P NZ. This gives an embedding of Z/(PNZ) into A/P.
Since A/P is an integral domain, so is Z/(P NZ). Thus, we have two cases

PAZ— {1(702) for some prime p € Z

(Casel) PN Z = pZ for some prime p € Z:
By 3rd isomorphism theorem, we have

A/P ~ (Z[pZX]) /(P/pZ[X]).
In fact Z/pZ[X] = F,[X], and the LHS is an integral domain. It follows that
P/pZ[X] is a prime ideal in F,[X]. Since F,[X] is UFD, P/pZ[X] = (f(X)) for
some f(X) € F,[X] irreducible polynomial of degree > 1 or P/pZ[X] = (0). Hence,
in this case, we obtain P = (p, f(X)) or P = pZ[X] where f is irreducible mod p.
(Case2) PNZ = (0):
Consider the ideal PQ[X] C Q[X], this is a proper prime ideal in Q[X]. So,
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PQ[X] = f(X)Q[X] where f is irreducible over Q. Further, we can assume that
the polynomial f is primitive. We claim that P = f(X)Z[X]. Suppose h € P,
h = fg for some g € Q[X]. Taking content(Gauss lemma) on each side, we obtain
g € Z[X]. Hence it follows that P = f(X)Z[X].

Now, we can write the result as follows:

Prime ideals P in Z[X] are one of the following forms:

(0);
1) P (f(X)) for f € Z[X] irreducible and primitive,
) () for some prime p € Z,
(

p, f(X)) for some prime p € Z, and f is irreducible mod p.

Now, we characterize the topology on Spec(Z[X]). Let I C Z[X] be a proper ideal.
Consider I N7Z = nZ, we have two cases,

(Casel) INZ = nZ with n #£ 0, +1:

Let p € V(I), i.e. p is a prime ideal containing I. Then p NZ = pZ for some prime
p|n. Fix a prime p|n. The ideal I + pZ[X] C Z[X] maps to some ideal (f(X)) C
[, [X] by reducing mod p, since F,[X] is a PID. Let f; be distinct irreducible factors
of finF,[X] if deg(f)> 0, and enumeration of all irreducible polynomials of F,[X]
with 0 if f = 0. Thus, we have (f(X)) C (fi(X)) C F,[X] for each ¢. Pulling back
these ideals to Z[X], we obtain I C I + pZ[X] C (p, fi(X)) C Z[X] for each i.
Hence, the result

V() =A{(p; fp.i) | pln, (I + pZIX])/(pZ[X]) = (fp(X)) C Fp[X], deg(fp) > 0, fpi are
distinct irreducible factor of f in F,[X]}
U{(p, fpi) | pIn, (I +pZ[X])/(pZ]X]) = (0) C F,[X], fp,; are enumeration of
all irreducible polynomials of F,[X] with 0}.
(Case2) INZ = (0):
Consider IQ[X] = (f(X)) € Q[X] with f being primitive. Then we obtain I =
f(X)Z[X] by Gauss lemma. Let f; be distinct irreducible factors of f, and 7, € C
be the corresponding roots of f;. For each ¢, we need to find primes p such that

(p, fi) become proper. To do this, we use Gauss lemma again so that we obtain the
result:

(p, f:) is proper < % ¢ Z[7i].
Hence, we have,
V() ={(p, fij) | fi|f,]19 ¢ Z[mil, ((fi) + pZ[X])/ (PZ[X]) = (fi(X) mod p) C Fp[X],
deg(f; mod p) > 0, f; ; are distinct irreducible factor of f; in Fp,[X]}
L)l filf irveducible}.

Problem4.
(a) We have a canonical isomorphism 0 = M ®p (R/I) ~ M/IM. From this we
obtain M = I'M. By Nakayama lemma, there exists a € I such that (1 —a)M = 0.
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Suppose 1 — a is not unit, then it is contained in some maximal ideal m C R. How-
ever, a € I C Rad(R) C m. So, it follows (1 — a) +a = 1 € m, which is impossible.
Hence, 1 —a is a unit, and (1 —a)M = M =0.

(b) We have M/N = (IM + N)/N =1 - (M/N). Since I C Rad(R), we can apply
(a) to obtain M/N = 0. Hence, M = N.

(c) Since k @g M = (R/m) ®r M ~ M/(mM) = 0, we see that M = mM. We can
apply (a) with I = m, and Rad(R) = m, since m is the unique maximal ideal in R.
Hence, we obtain by (a) that M = 0.

(d) Let N = Rx1+- - -+ Rz, be a R-submodule of M. We have (mM+N)/(mM) D
(R/m)z; for all i = 1,--- ;m. Thus, it follows that

M/mM > (mM + N)/(mM) D (R/m)z1 + - - + (R/m)T,, = M/mM.

This implies M = mM + N. Since Rad(R) = m, we can apply (b) to deduce that
M = N.



