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1. Introduction

Let Ek(z) = 1
2

∑
(c,d)=1(cz + d)−k be the Eisenstein series of weight k > 2. The

j-function on the upper half plane is defined by j(z) = E3
4

∆ where ∆(z) = 1
1728 (E3

4−
E2

6). For a primitive positive definite quadratic form Q(x, y) = ax2 + bxy + cy2,
and zQ = −b+

√
D

2a with D = b2 − 4ac < 0, it is known that j(zQ) is an algebraic
integer of degree h(D) by Kronecker and Weber. Here, we show a weaker result
that j(zQ) is an algebraic number of degree at most the class number h(D) using
the j-invariant of a complex lattice, orders in an imaginary quadratic field, and
complex multiplication.

Theorem 1.1. For a primitive positive definite quadratic form Q(x, y) = ax2 +
bxy + cy2, and zQ = −b+

√
D

2a with D = b2 − 4ac < 0, j(zQ) is an algebraic number
of degree at most the class number h(D).

2. j-invariant of a complex lattice

Definition 2.1. A subgroup L of C is called a complex lattice if L = ω1Z + ω2Z
with ω1, ω2 ∈ C being linearly independent over R. We simply write L = [ω1, ω2].
We say that two lattices L and L′ are homothetic if there is a nonzero complex
number λ such that L′ = λL. Note that homothety is an equivalence relation.

Definition 2.2. Weierstrass ℘-function associated to a complex lattice L = [ω1, ω2]
is defined by:

(2.1) ℘(z;L) =
1
z2

+
∑

w∈L−{0}

(
1

(z − w)2
− 1
w2

)
.

We simply write ℘(z) = ℘(z;L). Note that ℘(z + w) = ℘(z) for all w ∈ L.

Lemma 2.1. Let Gk(L) =
∑
w∈L−{0} w

−k for k > 2. Then, Weierstrass ℘-function
for a lattice L has Laurent expansion

(2.2) ℘(z) =
1
z2

+
∞∑
n=1

(2n+ 1)G2n+2(L)z2n.

Proof. We have the series expansion

1
(1− x)2

= 1 +
∞∑
n=1

(n+ 1)xn

for |x| < 1. Thus, if |z| < |w|, we have

1
(z − w)2

− 1
w2

=
∞∑
n=1

n+ 1
wn+2

zn.

1



2 KIM, SUNGJIN

Summing over w, we obtain

℘(z) =
1
z2

+
∞∑
n=1

(n+ 1)Gn+2(L)zn.

Since ℘ is an even function, the odd coefficients must vanish and (2) follows. �

Lemma 2.2. ℘-function for a lattice L satisfies the differential equation

(2.3) ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3

where g2 = 60G4, and g3 = 140G6.

Proof. Let F (z) = ℘′(z)2 − 4℘(z)3 + g2℘(z) + g3, then F has possible poles at
z = w ∈ L, is holomorphic on C − L, and F (z + w) = F (z) for all w ∈ L. But,
Laurent series expansions (followed from Lemma2.1)

℘(z)3 =
1
z6

+
9G4

z2
+ 15G6 +O(z)

, and

℘′(z)2 =
4
z6
− 24G4

z2
− 80G6 +O(z)

imply that F is holomorphic at 0, and F (0) = 0. By Liouville’s theorem, we have
F (z) = 0 for all z ∈ C. �

Corollary 2.1. ℘′(z)2 = 4(℘(z) − e1)(℘(z) − e2)(℘(z) − e3) where e1 = ℘(ω1/2),
e2 = ℘(ω2/2), and e3 = ℘((ω1 + ω2)/2). Furthermore,

∆(L) = 16(e1 − e2)2(e2 − e3)2(e3 − e1)2 = g3
2 − 27g2

3 6= 0.

Definition 2.3. The j-invariant j(L) of a lattice L is defined to be the complex
number

(2.4) j(L) = 1728
g2(L)3

g2(L)3 − 27g3(L)2
= 1728

g2(L)3

∆(L)
.

The remarkable fact is that the j-invariant j(L) characterizes the lattice L up
to homothety:

Proposition 2.1. If L and L′ are lattices in C, then j(L) = j(L′) if and only if L
and L′ are homothetic.

Proof. It is easy to see that homothetic lattices have the same j-invariant. Namely,
if λ ∈ C∗, then the definition of g2 and g3 implies that

g2(λL) = λ−4g2(L)

(2.5) g3(λL) = λ−6g3(L),

and j(λL) = j(L) follows easily.
For any lattice L = [ω1, ω2], we can assume that z = ω2

ω1
∈ H = {z ∈ C|Im z > 0}

without loss of generality. Then, L and [1, z] become homothetic lattices. Now, we
have the connection from j-invariant a lattice L and j-function on the upper half
plane:

j(L) = j([1, z]) = j(z) =
E4(z)3

∆(z)
.

Suppose that L and L′ have the same j-invariant. We first find z, z′ ∈ H such
that L is homothetic to [1, z], and L′ is homothetic to [1, z′]. Then, we have j(z) =
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j(z′). By the valence formula(See [2] p16, Theorem1.3), we obtain z′ ≡ z (mod
Γ = SL(2,Z)), since j has a simple pole at i∞. This implies that [1, z′] = [1, z].
Hence L and L′ are homothetic. �

Lemma 2.3. Let ℘(z) be the ℘-function for the lattice L, and as in Lemma 2.1,
let

(2.6) ℘(z) =
1
z2

+
∞∑
n=1

(2n+ 1)G2n+2(L)z2n.

be its Laurent expansion. Then for n ≥ 1, the coefficient (2n+ 1)G2n+2(L) of z2n

is a polynomial with rational coefficients, independent of L, in g2(L) and g3(L).

Proof. We differentiate ℘′(z)2 = 4℘(z)3 − g2℘(z)− g3 to obtain

℘′′(z) = 6℘(z)2 − 1
2
g2.

Let an = (2n+ 1)G2n+2(L). By substituting in the Laurent expansion for ℘(z) and
comparing the coefficients of z2n−2, one easily sees that for n ≥ 3,

2n(2n− 1)an = 6

(
2an +

n−2∑
i=1

aian−1−i

)
,

and hence

(2n+ 3)(n− 2)an = 3
n−2∑
i=1

aian−1−i.

Since g2(L) = 20a1 and g3(L) = 28a2, induction shows that an is a polynomial
with rational coefficients in g2(L) and g3(L). �

3. Orders in quadratic fields

Definition 3.1. An order O in a quadratic field K is a subset O ⊂ K such that
(i) O is a subring of K containing 1.
(ii) O is a finitely generated Z-module.
(iii) O contains a Q-basis of K.

The ring OK of integers in K is always an order in K. More importantly, (i) and
(ii) imply that for any order O of K, we have O ⊂ OK , so that OK is the maximal
order of K. Note that the maximal order OK can be written as:

(3.1) OK = [1, wK ], wK =
dK +

√
dK

2
,

where dK is the discriminant of K. We can now describe all orders in quadratic
fields:

Lemma 3.1. Let O be an order in a quadratic field K of discriminant dK . Then
O has finite index in OK , and we set f = [OK : O], then

(3.2) O = Z + fOK = [1, fwK ].

Proof. Since O and OK are free Z-modules of rank 2, it follows that f = [OK : O] is
finite. Since fOK ⊂ O, Z + fOK = [1, fwK ] ⊂ O follows. Thus, O = [1, fwK ]. �
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Given an order O in a quadratic field K, discriminant is defined as follows. Let
α 7→ α′ be the nontrivial automorphism of K, and suppose O = [α, β]. Then the
discriminant of O is the number

(3.3) D = disc[α, β] =
(

det
(
α β
α′ β′

))2

.

If f = [OK : O], then it follows that D = f2dK by Lemma 3.1.
Now consider ideals of an order O. Since O may not be a Dedekind domain, we

cannot assume that ideals have unique factorization. We introduce the concept of
a proper ideal of an order.

Definition 3.2. A fractional ideal of O is a subset of K which is a nonzero finitely
generated O-module. Then, a fractional O-ideal b is proper provided that

(3.4) O = {β ∈ K : βb ⊂ b}.

Proposition 3.1. Let O be an order in a quadratic field K, and let a be a fractional
O-ideal. Then a is proper if and only if a is invertible.

Proof. If a is invertible, then ab = O for some fractional O-ideal b. If β ∈ K and
βa ⊂ a, then we have

βO = β(ab) = (βa)b ⊂ ab = O,
and β ∈ O follows, proving that a is proper. �

To prove the converse, we need the following lemma:

Lemma 3.2. Let K = Q(τ) be a quadratic field, and let ax2 + bx + c be the
minimal polynomial of τ , where a, b and c are relatively prime integers. Then [1, τ ]
is a proper fractional ideal for the order [1, aτ ] of K.

Proof. First, [1, aτ ] is an order since aτ is an algebraic integer. Then, given β ∈ K,
note that β[1, τ ] ⊂ [1, τ ] is equivalent to β = m+nτ , m,n ∈ Z, and βτ = mτ+nτ2 =
−cn
a +

(−bn
a +m

)
τ ∈ [1, τ ]. But, this is also equivalent to a|n, since (a, b, c) = 1.

Thus, [1, τ ] is a proper fractional ideal for the order [1, aτ ].
Now, we can prove that proper fractional ideals are invertible. First note that a is

a Z-module of rank 2, so that a = [α, β] for some α, β ∈ K. Then a = α[1, τ ], where
τ = β/α. If ax2 + bx+ c, (a, b, c) = 1, is the minimal polynomial of τ , then Lemma
3.2 implies that O = [1, aτ ]. Let β 7→ β′ denote the nontrivial automorphism of K.
Since τ ′ is the other root of ax2 +bx+c, using Lemma 3.2 again shows a′ = α′[1, τ ′]
is a fractional ideal for [1, aτ ] = [1, aτ ′] = O. To see why a is invertible, note that

aaa′ = aαα′[1, τ ][1, τ ′] = N(α)[a, aτ, aτ ′, aττ ′].

Since τ + τ ′ = −b/a and ττ ′ = c/a, this becomes

aaa′ = N(α)[a, aτ,−b, c] = N(α)[1, aτ ] = N(α)O
since (a, b, c) = 1. This proves that a is invertible. �

Definition 3.3. Given an order O, let I(O) denote the set of proper fractional
O-ideals. By Proposition2, I(O) forms a group. The principal O-ideals give a
subgroup P (O) ⊂ I(O), and thus we can form the quotient

C(O) = I(O)/P (O),

which is the ideal class group of the order O.
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Let C(D) be the set of proper-equivalence classes of primitive quadratic forms
with discriminant D. Denote h(D) = |C(D)|.

Theorem 3.1. Let O be the order of discriminant D in an imaginary quadratic
field K.
(i) If f(x, y) = ax2 + bxy + cy2 is a primitive positive definite quadratic form of
discriminant D, then [a, (−b+

√
D)/2] is a proper ideal of O.

(ii) The map sending f(x, y) to [a, (−b+
√
D)/2] induces a bijection between C(D)

and the ideal class group C(O). Remark that h(D) = |C(D)| = |C(O)|.

Proof. (i) Let τ = (−b +
√
D)/2a. Then [a, (−b +

√
D)/2] = [a, aτ ] = a[1, τ ].

Note that by Lemma 3.2, a[1, τ ] is a proper ideal for the order [1, aτ ]. However, if
f = [OK : O], then D = f2dK , and thus

aτ = −b+ fdK
2

+ fwK ∈ [1, fwK ].

It follows that [1, aτ ] = [1, fwK ] = O by Lemma 3.1. This proves that a[1, τ ] is a
proper O-ideal.
(ii) Let f(x, y) and g(x, y) be forms of discriminant D, and let τ and τ ′ be their
respective roots. We will prove:

f(x, y), g(x, y) are properly equivalent

⇐⇒τ ′ =
pτ + q

rτ + s
,

(
p q
r s

)
∈ SL(2,Z)

⇐⇒[1, τ ] = λ[1, τ ′], λ ∈ K∗.

To see the first equivalence, assume that f(x, y) = g(px + qy, rx + sy), where(
p q
r s

)
∈ SL(2,Z). Then

0 = f(τ, 1) = g(pτ + q, rτ + s) = (rτ + t)2g

(
pτ + q

rτ + s
, 1
)
,

so that g((pτ + q)/(rτ + s), 1) = 0. However, if τ ∈ H, then (pτ + q)/(rτ + s) ∈ H,
thus τ ′ = (pτ + q)/(rτ + s). Conversely, if τ ′ = (pτ + q)/(rτ + s), then we have
f(x, y) and g(px+ qy, rx+ sy) have the same root, hence they are equal.

Next, if τ ′ = (pτ + q)/(rτ + s), let λ = rτ + s ∈ K∗. Then

λ[1, τ ′] = (rτ + s)
[
1,
pτ + q

rτ + s

]
= [rτ + s, pτ + q] = [1, τ ]

since
(
p q
r s

)
∈ SL(2,Z). Conversely, if [1, τ ] = λ[1, τ ′] for some λ ∈ K∗, then

[1, τ ] = [λ, λτ ′], which implies

λτ ′ = pτ + q

λ = rτ + s

for some
(
p q
r s

)
∈ GL(2,Z). This gives us τ ′ = pτ+q

rτ+s . Since τ, τ ′ are both in H,

we have
(
p q
r s

)
∈ SL(2,Z).
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These equivalences show that the map sending f(x, y) to a[1, τ ] induces an in-
jection C(D) −→ C(O).
To show that the map is surjective, let a be a proper fractional O-ideal. We write
a = [α, β] for some α, β ∈ K with τ = β/α lies in H. Let ax2 + bx + c be the
minimal polynomial of τ . We may assume that (a, b, c) = 1 and a > 0. Then
f(x, y) = ax2 + bxy+ cy2 is positive definite of discriminant D, and maps to a[1, τ ]
which is in the class of a.

We thus have a bijection of sets

(3.5) C(D) −→ C(O).

�

4. Complex Multiplication

First, we observe that orders in imaginary quadratic fields give rise to a natural
class of lattices. If O is an order in a quadratic field K and a = [α, β] is a proper
fractional O-ideal, then α and β are linearly independent over R. Thus a ⊂ C is a
lattice. Conversely, let L ⊂ C be a lattice which is contained in K. Then L is a
proper fractional O-ideal for some order O of K. As a consequence, we have that a
and b determine the same class in the ideal class group C(O) if and only if they are
homothetic as lattices in C. Moreover, this enables us to define j(a) for a proper
fractional O-ideal.

We defined ℘-function for a lattice L ⊂ C. In fact, any elliptic function for L is
a rational function of ℘ and ℘′.

Lemma 4.1. Any even elliptic function for L is a rational function in ℘(z).

Proof. (a) Let f(z) be an even elliptic function which is holomorphic on C − L.
Then there is a polynomial A(x) such that the Laurent expansion of f(z)−A(℘(z))
is holomorphic on C. By Liouville’s theorem, f(z) − A(℘(z)) is a constant. Thus,
f(z) is a polynomial in ℘(z).
(b) Let f(z) be an even elliptic function that has a pole of order m at w ∈ C− L.
If 2w /∈ L, then (℘(z) − ℘(w))mf(z) is holomorphic at w, since (℘(z) − ℘(w)) has
a zero at z = w. If 2w ∈ L, then m is even, since the Laurent expansion for f(z)
and f(2w − z) at z = w must be equal. In this case, (℘(z) − ℘(w))m/2f(z) is
holomorphic at w, since (℘(z)− ℘(w)) has double zero at z = w.
(c) Now we can show that for an even elliptic function f(z), there is a polynomial
B(x) such that B(℘(z))f(z) is holomorphic on C− L. Then the lemma follows by
part (a). �

For any elliptic function f(z) for L, we have

f(z) =
f(z) + f(−z)

2
+
(
f(z)− f(−z)

2℘′(z)

)
℘′(z).

Hence, any elliptic function for L is a rational function of ℘ and ℘′. We turn into
an important proposition about complex multiplication:

Proposition 4.1. Let L be a lattice, and let ℘(z) be the ℘-function for L. Then,
for a number α ∈ C− Z, the following statements are equivalent:
(i) ℘(αz) is a rational function in ℘(z).
(ii) αL ⊂ L.
(iii) There is an order O in an imaginary quadratic field K such that α ∈ O and L
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is homothetic to a proper fractional O-ideal.
Furthermore, if these conditions are satisfied, then ℘(αz) can be written in the form

(4.1) ℘(αz) =
A(℘(z))
B(℘(z))

where A(x) and B(x) are relatively prime polynomials such that

deg(A(x)) = deg(B(x)) + 1 = [L : αL] = N(α).

Proof. (i)⇒(ii). If ℘(αz) is a rational function in ℘(z), then there are polynomials
A(x) and B(x) such that

B(℘(z))℘(αz) = A(℘(z)).

Comparing the order or pole at z = 0, we have

deg(A(x)) = deg(B(x)) + 1.

Now, let ω ∈ L. Then the above show that ℘(αz) has a pole at ω, which means
that ℘(z) has a pole at αω. Since the poles of ℘(z) are exactly at members in L,
this implies αω ∈ L, and αL ⊂ L follows.
(ii)⇒(i). If αL ⊂ L, it follows that ℘(αz) is meromorphic and has L as a lattice of
periods. Furthermore, ℘(αz) is an even function. By Lemma 4.1, we have ℘(αz) is
a rational function in ℘(z).
(ii)⇒(iii). Suppose that αL ⊂ L. Replacing L by λL for suitable λ, we can assume
that L = [1, τ ] for some τ ∈ C − R. Then αL ⊂ L means that α = a + bτ and
ατ = c+ dτ for some integers a, b, c and d. Then we obtain,

τ =
c+ dτ

a+ bτ
,

which implies bτ2 + (a − d)τ − c = 0. Since τ is not real, we have b 6= 0, and
K = Q(τ) is an imaginary quadratic field. Thus,

O = {β ∈ K|βL ⊂ L} = {β ∈ K|β[1, τ ] ⊂ [1, τ ]} = [1, bτ ]

is an order of K for which L is a proper fractional O-ideal(by Lemma 3.2), and
since α is obviously in O, we are done.
(iii)⇒(ii) is trivial.
Suppose αL ⊂ L = [1, τ ]. From the definition of discriminant (3.3), we obtain

N(α)2disc[1, τ ] = disc[α, ατ ] = [L : αL]2disc[1, τ ].

Thus, [L : αL] = N(α). It remains to prove that degree of A(x) is the index
[L : αL].

Fix z ∈ C such that 2z /∈ (1/α)L, and consider the polynomial A(x)−℘(αz)B(x).
This polynomial has the same degree as A(x), and z can be chosen so that it has
distinct roots(multiple root ofA(x)−℘(αz)B(x) is a root ofA(x)B′(x)−A′(x)B(x).)
Then consider the lattice L ⊂ (1/α)L, and let {wi} be coset representatives of L in
(1/α)L. Our assumption on z implies that ℘(z+wi) are distinct. From (4.1), we see
that A(℘(z+wi)) = ℘(α(z+wi))B(℘(z+wi)). But αwi ∈ L, hence ℘(α(z+wi)) =
℘(αz). This shows that ℘(z + wi) are distinct roots of A(x) − ℘(αz)B(x). Let u
be another root. Then we see that u = ℘(w) for some complex number w. Then,
℘(αz) = ℘(αw), and w ≡ z + wi mod L for some i. Hence ℘(z + wi) are all roots
of A(x)− ℘(αz)B(x), giving that degA(x) = [(1/α)L : L] = [L : αL]. �
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Together with Laurent series of ℘(z), this theorem allows us to compute some
special values of j-function for example:

j(
√
−2) = 8000 and j

(
1 +
√
−7

2

)
= −3375.

To complete the proof of Theorem1.1, we need a lemma involving the invariants
g2(L) and g3(L).

Lemma 4.2. Let g2 and g3 be given complex numbers satisfying g3
2 − 27g2

3 6= 0.
Then there is a unique lattice L ⊂ C such that g2(L) = g2 and g3(L) = g3.

Proof. We can find z ∈ H such that j(z) = E4(z)3/∆(z) = 1728g3
2/(g

3
2−27g2

3). By
valence formula, this z is uniquely determined modulo Γ. If g2 6= 0, then we find
w1 ∈ C such that

(4.2) g2 =
4π4

3w4
1

E4(z).

Using −w1 if necessary, we obtain

(4.3) g3 =
8π6

27w6
1

E6(z).

If g2 = 0, then we have g3 6= 0 and we find w1 ∈ C using (4.3). Let w2 = zw1, then
L = [w1, w2] is the desired lattice.

Suppose we have two lattices L and L′ with g2(L) = g2(L′) and g3(L) = g3(L′).
Then, j(L) = j(L′) implies that there exists λ ∈ C − {0} such that L′ = λL by
Proposition2.1. If g2(L) 6= 0 and g3(L) 6= 0, then (2.5) give λ2 = 1. Thus, L = L′.
If g2(L) = 0, then L = λ1[1, w] and L′ = λ2[1, w] for some λ1, λ2 ∈ C − {0} with
w = exp(2πi/3). But, (2,5) gives λ6

1 = λ6
2. Thus, L = L′

If g3(L) = 0, then L = λ1[1, i] and L′ = λ2[1, i] for some λ1, λ2 ∈ C− {0}. In this
case, (2.5) gives λ4

1 = λ4
2. Hence, L = L′. �

Now, we are ready to prove Theorem1.1. In fact, the following theorem will
imply Theorem1.1.

Theorem 4.1. Let O be an order in an imaginary quadratic field, and let a be
a proper fractional O-ideal. Then j(a) is an algebraic number of degree at most
h(O).

Proof. By Lemma2.3, we can write the Laurent expansion of ℘(z) for the lattice a
as

℘(z) =
1
z2

+
∞∑
n=1

an(g2, g3)z2n,

where an is a polynomial in g2 and g3 with rational coefficients. To emphasize the
dependence on g2 and g3, we write ℘(z) as ℘(z; g2, g3).

By assumption, for any α ∈ O, we have αa ⊂ a. Thus, by Proposition4.1, ℘(αz)
is a rational function in ℘(z).

℘(αz; g2, g3) =
1

α2z2
+
∞∑
n=1

an(g2, g3)α2nz2n

=
A(℘(z; g2, g3))
B(℘(z; g2, g3))
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for some polynomials A(x) and B(x). We can regard this as an identity in the field
of meromorphic Laurent series C((z)).

Now let σ be any automorphism of C. Then σ induces an automorphism of
C((z)). Applying σ, we obtain

(4.4) ℘(σ(α)z;σ(g2), σ(g3)) =
Aσ(℘(z;σ(g2), σ(g3)))
Bσ(℘(z;σ(g2), σ(g3)))

.

We observe that g3
2 − 27g2

3 6= 0 implies σ(g2)3− 27σ(g3)2 6= 0. By Lemma4.2, there
exists a lattice L such that

g2(L) = σ(g2)
g3(L) = σ(g3).

Since ℘(z;σ(g2), σ(g3)) = ℘(z;L), (4.4) implies that ℘(z;L) has complex multipli-
cation by σ(α). Let O′ be the ring of all complex multiplications of L, then we
have proved that

O = σ(O) ⊂ O′.
Applying σ−1 and we interchange a and L, then above argument shows O′ ⊂ O,
which shows that O is the ring of all complex multiplications of both a and L.

Now consider j-invariants. Above formulas for g2(L) and g3(L) imply that

j(L) = σ(j(a)).

Since L hasO as its ring of complex multiplications, there are only h(O) possibilities
for j(L). It follows that j(a) must be an algebraic number, and the degree is at
most h(O). �

Suppose thatO is an order of discriminant D in an imaginary quadratic field, and
ax2 + bxy+ cy2 is a primitive positive definite quadratic form with discriminant D.
Then, for zQ = −b+

√
D

2a , a = [1, zQ] is a proper fractional ideal in O by Lemma3.2.
Now, Theorem4.1 implies that j(a) = j([1, zQ]) = j(zQ) is an algebraic number
of degree at most h(O) = h(D) (by Theorem3.1). This completes the proof of
Theorem1.1.
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