SPECIAL VALUES OF j;-FUNCTION WHICH ARE ALGEBRAIC

KIM, SUNGJIN

1. INTRODUCTION
Let Ey(z) = % Dedy=1(cz + d)~* be the Eisenstein series of weight k > 2. The

j-function on the upper half plane is defined by j(z) = EKi where A(z2) = 1255 (Ef —
EZ2). For a primitive positive definite quadratic form Q(z,y) = ax?® + bry + cy?,
and zg = % with D = b? — 4ac < 0, it is known that j(zg) is an algebraic
integer of degree h(D) by Kronecker and Weber. Here, we show a weaker result
that j(zq) is an algebraic number of degree at most the class number k(D) using
the j-invariant of a complex lattice, orders in an imaginary quadratic field, and

complex multiplication.
Theorem 1.1. For a primitive positive definite quadratic form Q(z,y) = ax?® +
bry + cy?, and 2zg = _l’%@ with D = b? — dac < 0, j(2¢) is an algebraic number

of degree at most the class number h(D).

2. j-INVARIANT OF A COMPLEX LATTICE

Definition 2.1. A subgroup L of C is called a complex lattice if L = w1Z + woZ
with wy,ws € C being linearly independent over R. We simply write L = [wy, ws].
We say that two lattices L and L’ are homothetic if there is a nonzero complex
number A such that L' = AL. Note that homothety is an equivalence relation.

Definition 2.2. Weierstrass p-function associated to a complex lattice L = w1, ws]
is defined by:

1 1 1
(2.) =%+ ¥ (o)
weL—{0}
We simply write p(2) = p(z; L). Note that p(z + w) = p(z) for all w € L.

Lemma 2.1. Let Gx(L) = X1 (0} w™F for k > 2. Then, Weierstrass p-function
for a lattice L has Laurent expansion

(2.2) o(z) = Zi2 32+ 1)Gansa(L)22".

Proof. We have the series expansion

(1_%)2:1+Z(n+1)9:”

for |x| < 1. Thus, if |z| < |w|, we have
1 1 =n+l,
(z—w)? w? :Zw””Z ’

n=1
1
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Summing over w, we obtain
J N
p(x) =5 + D (n+1)Gra(L)z".
n=1

Since p is an even function, the odd coefficients must vanish and (2) follows. O

Lemma 2.2. p-function for a lattice L satisfies the differential equation

(2.3) ¢'(2)* = 4p(2)° — ga(2) — g3
where go = 60Gy, and g3 = 140Gs.

Proof. Let F(2) = ¢/(2)? — 4p(2)® + g2p(2) + g3, then F has possible poles at
z = w € L, is holomorphic on C — L, and F(z + w) = F(z) for all w € L. But,
Laurent series expansions (followed from Lemma2.1)

1 9G4

p(z)3 =% + — + 15Gg + O(2)

, and
4 24G
p,(Z)2 = ; — 74 — 80G6 + O(Z)
imply that F' is holomorphic at 0, and F(0) = 0. By Liouville’s theorem, we have
F(z)=0forall z € C. O

Corollary 2.1. ¢/(2)? = 4(p(2) — e1)(p(2) — e2)(p(2) — e3) where e; = p(w/2),
e2 = p(wa/2), and e3 = p((w1 + wz)/2). Furthermore,

A(L) = 16(e; — e2)?(e2 — e3)*(e3 —e1)* = g5 — 2793 # 0.
Definition 2.3. The j-invariant j(L) of a lattice L is defined to be the complex
number
3 3
92(L) _ 172892(L)

(2.4) J(L) = 1728g2(L)3 — 27g5(L)? A(L) -

The remarkable fact is that the j-invariant j(L) characterizes the lattice L up
to homothety:

Proposition 2.1. If L and L’ are lattices in C, then j(L) = j(L') if and only if L
and L’ are homothetic.

Proof. Tt is easy to see that homothetic lattices have the same j-invariant. Namely,
if A\ € C*, then the definition of go and g3 implies that

g2(AL) = A\ *ga(L)

(2.5) g3(AL) = A"%g3(L),
and j(AL) = j(L) follows easily.

For any lattice L = [w1,ws], we can assume that 2 = 22 € H = {z € C|Im 2 > 0}
without loss of generality. Then, L and [1, z] become homothetic lattices. Now, we
have the connection from j-invariant a lattice L and j-function on the upper half
plane:

. : , By(2)?
L = 1 = = .
i) = i) =i = 33

Suppose that L and L’ have the same j-invariant. We first find 2,2’ € H such

that L is homothetic to [1, 2], and L’ is homothetic to [1, 2’]. Then, we have j(z) =
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j(z'). By the valence formula(See [2] pl6, Theoreml.3), we obtain 2z’ = z (mod
I = SL(2,7Z)), since j has a simple pole at ico. This implies that [1, 2] = [1, z].
Hence L and L’ are homothetic. (]

Lemma 2.3. Let p(z) be the p-function for the lattice L, and as in Lemma 2.1,
let

(2.6) o(z) = Zi2 + ) (20 + 1)Ganya(L) 27"
n=1

be its Laurent expansion. Then for n > 1, the coefficient (2n + 1)Gay,12(L) of 22"
is a polynomial with rational coefficients, independent of L, in go2(L) and g5(L).

Proof. We differentiate o'(2)? = 4p(2)% — g2p(2) — g3 to obtain
1

¢'(2) = 6p(2)* = 592

Let a,, = (2n+1)Gap42(L). By substituting in the Laurent expansion for g(z) and
comparing the coefficients of 22”2, one easily sees that for n > 3,

n—2
2n(2n — 1)a, =6 <2an + Z aian1i> ,

=1

and hence
n—2

2n+3)(n—2)a, =3 Z Ailpy—1—i-
i=1
Since go(L) = 20a; and g3(L) = 28as, induction shows that a, is a polynomial
with rational coefficients in g2 (L) and g3(L). O

3. ORDERS IN QUADRATIC FIELDS

Definition 3.1. An order O in a quadratic field K is a subset O C K such that
(i) O is a subring of K containing 1.

(ii) O is a finitely generated Z-module.

(iii) O contains a Q-basis of K.

The ring Ok of integers in K is always an order in K. More importantly, (i) and
(ii) imply that for any order O of K, we have O C Ok, so that O is the maximal
order of K. Note that the maximal order Ok can be written as:

dx +Vdi
2 b

where dg is the discriminant of K. We can now describe all orders in quadratic
fields:

(3.1) OK = [1,11]}{], WK =

Lemma 3.1. Let O be an order in a quadratic field K of discriminant dx. Then
O has finite index in Ok, and we set f =[Ok : O], then

(3.2) O =7+ fOx = 1, fux].

Proof. Since O and O are free Z-modules of rank 2, it follows that f =[Ok : O] is
finite. Since fOx C O, Z+ fOk = [1, fwk]| C O follows. Thus, O = [1, fwg]|. O
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Given an order O in a quadratic field K, discriminant is defined as follows. Let
a — o be the nontrivial automorphism of K, and suppose O = [, 5]. Then the
discriminant of O is the number

(3.3) D = discla, 8] = (det (C‘: g,))Z.

If f =[Ok : O], then it follows that D = f2dx by Lemma 3.1.

Now consider ideals of an order O. Since O may not be a Dedekind domain, we
cannot assume that ideals have unique factorization. We introduce the concept of
a proper ideal of an order.

Definition 3.2. A fractional ideal of O is a subset of K which is a nonzero finitely
generated O-module. Then, a fractional O-ideal b is proper provided that

(3.4) O={Be€K:pbChb}.

Proposition 3.1. Let O be an order in a quadratic field K, and let a be a fractional
(-ideal. Then a is proper if and only if a is invertible.

Proof. If a is invertible, then ab = O for some fractional O-ideal b. If § € K and
Ba C a, then we have

BO = [(ab) = (Ba)b C ab = O,
and 0 € O follows, proving that a is proper. O
To prove the converse, we need the following lemma:

Lemma 3.2. Let K = Q(7) be a quadratic field, and let ax® + bz + ¢ be the
minimal polynomial of 7, where a, b and ¢ are relatively prime integers. Then [1, 7]
is a proper fractional ideal for the order [1,a7] of K.

Proof. First, [1,at] is an order since a7 is an algebraic integer. Then, given 8 € K,
note that 3[1,7] C [1, 7] is equivalent to 8 = m+n7, m,n € Z, and 7 = m7+n7? =
=en 4 (= 4 m) 7 € [1,7]. But, this is also equivalent to a|n, since (a,b,c) = 1.
Thus, [1,7] is a proper fractional ideal for the order [1,ar].

Now, we can prove that proper fractional ideals are invertible. First note that a is
a Z-module of rank 2, so that a = [a, (] for some o, 8 € K. Then a = «[1, 7], where
7= B/a. If ax® +bx +e¢, (a,b,c) = 1, is the minimal polynomial of 7, then Lemma
3.2 implies that O = [1,ar]. Let 8 — (' denote the nontrivial automorphism of K.
Since 7’ is the other root of az?+bx + ¢, using Lemma 3.2 again shows a’ = o/[1, 7]
is a fractional ideal for [1,a7] = [1,a7’] = O. To see why a is invertible, note that

aad’ = aad’[1,7][1,7'] = N(a)[a,at,at’,ar7’].

Since 7 + 7' = —b/a and 77" = ¢/a, this becomes
aad’ = N(a)[a,ar, —b,c] = N(a)[1,ar] = N(a)O
since (a,b,c) = 1. This proves that a is invertible. O

Definition 3.3. Given an order O, let I(O) denote the set of proper fractional
O-ideals. By Proposition2, I(O) forms a group. The principal O-ideals give a
subgroup P(0) C I(0O), and thus we can form the quotient

C(0) =1(0)/P(0),
which is the ideal class group of the order O.



SPECIAL VALUES OF j-FUNCTION WHICH ARE ALGEBRAIC 5

Let C(D) be the set of proper-equivalence classes of primitive quadratic forms
with discriminant D. Denote h(D) = |C(D)].

Theorem 3.1. Let O be the order of discriminant D in an imaginary quadratic
field K.

(i) If f(x,y) = ax® + bry + cy? is a primitive positive definite quadratic form of
discriminant D, then [a, (—b 4+ v/D)/2] is a proper ideal of O.

(ii) The map sending f(z,v) to [a, (—b+ v/D)/2] induces a bijection between C (D)
and the ideal class group C(Q). Remark that h(D) = |C(D)| = |C(O)|.

Proof. (i) Let 7 = (=b + v/D)/2a. Then [a,(=b + vD)/2] = [a,a1] = a[l,7].
Note that by Lemma 3.2, a[l, 7] is a proper ideal for the order [1,a7]. However, if
f =[O0k : O], then D = f2dy, and thus

= _%4—]0101( € [1, fwk].

It follows that [1,a7] = [1, fwk] = O by Lemma 3.1. This proves that a[l,7] is a
proper O-ideal.

(ii) Let f(z,y) and g(z,y) be forms of discriminant D, and let 7 and 7’ be their
respective roots. We will prove:

f(z,y), g(z,y) are properly equivalent
VRN ' a4 (p q) € SL(2,Z)
T+ S ros
<1, 7] = \[1,7], e K.

To see the first equivalence, assume that f(z,y) = g(pz + qy,rz + sy), where

(p q) € SL(2,7). Then
r S

PT+4q
0=f(r,1) = +q. 77 +5) = t)? 1
f(m 1) =glpr +q,r7+s) = (r7 + )g(rT ) )

so that g((p7+q)/(r7+s),1) = 0. However, if 7 € H, then (pr+¢q)/(r7+s) € H,
thus 7/ = (pT + q)/(r7 + s). Conversely, if 7/ = (p7 + q)/(r7 + s), then we have
f(z,y) and g(px + qy, rx + sy) have the same root, hence they are equal.

Next, if 7/ = (pr+q)/(r7 + 8), let A\=r7+ s € K*. Then

pT+q]

n_
AL, 7= (rm+9) |:177‘T+S

=[rr+s,pr+q =][1,7]

s
[1,7] = [A\, A7'], which implies

since (1; q> € SL(2,Z). Conversely, if [1,7] = A[1,7'] for some A\ € K*, then

AT =pr+4q
A=r7+s

for some (f Z) € GL(2,Z). This gives us 7/ = 2212, Since 7,7’ are both in H,

rr+s°

we have (2; z) € SL(2,Z).



6 KIM, SUNGJIN

These equivalences show that the map sending f(z,y) to a[l,7] induces an in-
jection C'(D) — C(0O).
To show that the map is surjective, let a be a proper fractional O-ideal. We write
a = [a, 3] for some a,3 € K with 7 = 3/a lies in H. Let az? + bz + ¢ be the
minimal polynomial of 7. We may assume that (a,b,¢) = 1 and @ > 0. Then
f(x,y) = ax? + bzy + cy? is positive definite of discriminant D, and maps to a[l, 7]
which is in the class of a.

We thus have a bijection of sets

(3.5) C(D) — C(0).

4. COMPLEX MULTIPLICATION

First, we observe that orders in imaginary quadratic fields give rise to a natural
class of lattices. If O is an order in a quadratic field K and a = [a, (] is a proper
fractional O-ideal, then « and 3 are linearly independent over R. Thus a C C is a
lattice. Conversely, let L C C be a lattice which is contained in K. Then L is a
proper fractional O-ideal for some order O of K. As a consequence, we have that a
and b determine the same class in the ideal class group C(O) if and only if they are
homothetic as lattices in C. Moreover, this enables us to define j(a) for a proper
fractional O-ideal.

We defined p-function for a lattice L C C. In fact, any elliptic function for L is
a rational function of p and ¢’.

Lemma 4.1. Any even elliptic function for L is a rational function in @(z).

Proof. (a) Let f(z) be an even elliptic function which is holomorphic on C — L.
Then there is a polynomial A(z) such that the Laurent expansion of f(z)— A(p(2))
is holomorphic on C. By Liouville’s theorem, f(z) — A(p(z)) is a constant. Thus,
f(2) is a polynomial in p(z).

(b) Let f(z) be an even elliptic function that has a pole of order m at w € C — L.
If 2w ¢ L, then (p(z) — p(w))™f(z) is holomorphic at w, since (p(z) — p(w)) has
a zero at z = w. If 2w € L, then m is even, since the Laurent expansion for f(z)
and f(2w — z) at z = w must be equal. In this case, (p(2) — p(w))™/2f(z) is
holomorphic at w, since (p(z) — p(w)) has double zero at z = w.

(¢) Now we can show that for an even elliptic function f(z), there is a polynomial
B(z) such that B(p(z))f(z) is holomorphic on C — L. Then the lemma follows by
part (a). O

For any elliptic function f(z) for L, we have

2 2¢/(2)
Hence, any elliptic function for L is a rational function of p and u’. We turn into
an important proposition about complex multiplication:

Proposition 4.1. Let L be a lattice, and let p(z) be the p-function for L. Then,
for a number a € C — Z, the following statements are equivalent:

(i) p(az) is a rational function in p(z).

(ii) aL C L.

(iii) There is an order O in an imaginary quadratic field K such that o« € O and L
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is homothetic to a proper fractional O-ideal.
Furthermore, if these conditions are satisfied, then p(az) can be written in the form

Alp(2))
B(p(2))

where A(z) and B(z) are relatively prime polynomials such that

deg(A(x)) = deg(B(z)) +1=[L: al] = N(«a).

(4.1) ploz) =

Proof. (i)=-(ii). If p(az) is a rational function in p(z), then there are polynomials
A(z) and B(z) such that

B(p(2))p(az) = Ap(2)).
Comparing the order or pole at z = 0, we have
deg(A(z)) = deg(B(z)) + 1.

Now, let w € L. Then the above show that p(az) has a pole at w, which means
that p(2) has a pole at aw. Since the poles of p(z) are exactly at members in L,
this implies aw € L, and oL C L follows.

(ii)=(i). If oL C L, it follows that p(az) is meromorphic and has L as a lattice of
periods. Furthermore, p(az) is an even function. By Lemma 4.1, we have p(az) is
a rational function in p(z).

(ii)=-(iii). Suppose that aL. C L. Replacing L by AL for suitable A, we can assume
that L = [1,7] for some 7 € C — R. Then L C L means that « = a + br and
at = ¢+ dr for some integers a, b, c and d. Then we obtain,

B c+dr
a+br’

which implies b72 + (a — d)7 — ¢ = 0. Since 7 is not real, we have b # 0, and
K = Q(7) is an imaginary quadratic field. Thus,

O={feK|BLC L} ={8€ K|B[1,7] C [1,7]} =[1, bT]

is an order of K for which L is a proper fractional O-ideal(by Lemma 3.2), and
since « is obviously in O, we are done.
(iil)=-(ii) is trivial.
Suppose aL C L = [1,7]. From the definition of discriminant (3.3), we obtain
N (a)?disc[1, 7] = disc[a, a7] = [L : aL]*disc[1, 7].

Thus, [L : aL] = N(«). It remains to prove that degree of A(x) is the index
[L:al).

Fix z € Csuch that 2z ¢ (1/a)L, and consider the polynomial A(x)—p(az)B(z).
This polynomial has the same degree as A(z), and z can be chosen so that it has
distinct roots(multiple root of A(z)—gp(«z)B(z) is aroot of A(x)B’(z)—A'(z)B(z).)
Then consider the lattice L C (1/a)L, and let {w;} be coset representatives of L in
(1/a) L. Our assumption on z implies that p(z+w;) are distinct. From (4.1), we see
that A(p(z+w;)) = p(a(z+w;))B(p(z+w;)). But aw; € L, hence p(a(z+w;)) =
p(az). This shows that p(z + w;) are distinct roots of A(z) — p(az)B(z). Let u
be another root. Then we see that u = p(w) for some complex number w. Then,
plaz) = p(aw), and w = z + w; mod L for some i. Hence p(z + w;) are all roots
of A(z) — p(az)B(x), giving that degA(z) = [(1/a)L : L] = [L : aL]. O
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Together with Laurent series of p(z), this theorem allows us to compute some
special values of j-function for example:

= —3375.

7(v/=2) = 8000 and j <H2\ﬁ)

To complete the proof of Theoreml.1, we need a lemma involving the invariants
g2(L) and g3(L).

Lemma 4.2. Let g, and g3 be given complex numbers satisfying g3 — 27¢% # 0.
Then there is a unique lattice L C C such that g3(L) = g2 and g3(L) = g3.

Proof. We can find z € H such that j(z) = E4(2)3/A(z) = 1728¢3 /(g5 —27g3). By
valence formula, this z is uniquely determined modulo I'. If g5 # 0, then we find
wi € C such that

4t

(4.2) 92 = 5 Ea(2).
3w}

Using —w; if necessary, we obtain
876

(4.3) 05 = o2 Ey(2).
27w’

If go = 0, then we have g3 # 0 and we find w; € C using (4.3). Let wy = zwy, then
L = w1, ws] is the desired lattice.

Suppose we have two lattices L and L' with g2(L) = ¢g2(L') and g3(L) = gs(L').
Then, j(L) = j(L') implies that there exists A € C — {0} such that L' = AL by
Proposition2.1. If go(L) # 0 and g3(L) # 0, then (2.5) give A2 = 1. Thus, L = L'.
If go(L) = 0, then L = A\{[1,w] and L’ = X2[1,w] for some A, Ay € C — {0} with
w = exp(2mi/3). But, (2,5) gives \§ = . Thus, L = L'/

If g3(L) = 0, then L = A\[1,4] and L' = X2[1,4] for some A1, Ay € C — {0}. In this
case, (2.5) gives AT = \3. Hence, L = L'. O

Now, we are ready to prove Theoreml.l. In fact, the following theorem will
imply Theorem1.1.

Theorem 4.1. Let O be an order in an imaginary quadratic field, and let a be
a proper fractional O-ideal. Then j(a) is an algebraic number of degree at most

h0).

Proof. By Lemma2.3, we can write the Laurent expansion of p(z) for the lattice a
as

I .
p(z) = 2T Zan(gz,g:a)ZQ 5
n=1

where a,, is a polynomial in go and g3 with rational coefficients. To emphasize the
dependence on go and g3, we write p(z) as ©(z; g2, 93)-

By assumption, for any a € O, we have aa C a. Thus, by Propositiond.1, p(az)
is a rational function in p(z).

oo

. — 1 2n . 2n
p(az7927g3) - 22 +;an(g2793)a z

A(p(2;92,93))
B(p(2; 92, 93))
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for some polynomials A(x) and B(z). We can regard this as an identity in the field
of meromorphic Laurent series C((z)).

Now let o be any automorphism of C. Then ¢ induces an automorphism of
C((2)). Applying o, we obtain

(4.4) p(o(a)z;0(g92),0(g3)) = gii E Egzg’zg ;;%
2

We observe that g5 —27¢3 # 0 implies o(g2)® — 270 (g3)? # 0. By Lemmad4.2, there
exists a lattice L such that
92(L) = o(g2)

g3(L) = o(g3).
Since p(z;0(g2),0(g3)) = p(z; L), (4.4) implies that (z; L) has complex multipli-
cation by o(«). Let O be the ring of all complex multiplications of L, then we
have proved that

0=0(0)CO.
Applying 0~ ! and we interchange a and L, then above argument shows O’ C O,
which shows that O is the ring of all complex multiplications of both a and L.

Now consider j-invariants. Above formulas for go(L) and g3(L) imply that

J(L) = o(j(a)).
Since L has O as its ring of complex multiplications, there are only h(QO) possibilities
for j(L). It follows that j(a) must be an algebraic number, and the degree is at
most h(O). O

Suppose that O is an order of discriminant D in an imaginary quadratic field, and
ax? +bxy + cy? is a primitive positive definite quadratic form with discriminant D.
Then, for zg = b+‘/>, a = [1,2q] is a proper fractional ideal in O by Lemma3.2.
Now, Theorem4.1 1mphes that j(a) = j([1,2¢9]) = j(2q) is an algebraic number
of degree at most h(O) = h(D) (by Theorem3.1). This completes the proof of
Theorem1.1.

REFERENCES

1. D. Cox, Prines of the Form x2 + ny?, John Wiley & Sons. Inc.
2. H. Iwaniec, Topics in Classical Automorphic Forms, AMS Providence, Rhode Island.



