
!"#$"%!&

#&

James Flynn
Sharlene Katz

Software Defined Radio Basics: The
Link Equation, Sources, and Filters

Overview

8/18/08 2

! !Preparing for the Fall
! !The Link Equation
! !Signal Representation
! !Examining GNU Radio Data in MATLAB
! !Filtering in GNU Radio

!"#$"%!&

'&

Fall Meetings/Work Plan

8/18/08 3

! !Undergraduates
! !On campus meeting time
! ! Additional members

! !Graduates
! !Meeting time
! !Possible projects

! !Future Topics
! !Digital Communications
! !Packet communications
! !GUI Interfaces - WxPython

Performance of a Radio Link
! !To determine how well a link performs, we need

to know:
 -Signal to noise ratio at receiver
 -Modulation scheme

CAN YOU HEAR ME

NOW?

8/18/08 4

!"#$"%!&

(&

Performance of a Radio Link
In analog systems, performance is subjective.
In digital systems, performance is precisely

specified as Probability of Error, Pe.

In digital systems, Pe determined by modulation
scheme and Signal to Noise Ratio, SNR.

!

Pe =
number of errors in n bits

n

8/18/08 5

Performance of a Radio Link
! !SNR at receiver crucial in determining link

performance.

! !May be expressed in dB.

!

SNR=
signal power at receiver
noise power at receiver

8/18/08 6

!"#$"%!&

)&

Performance of a Radio Link
! !Signal Power at Receiver determined by LINK

EQUATION

! !Also known as the Friis Equation

! !Used to compute power levels at receiver based on
distance, transmitter power and antenna gain.

! !Used only for free-space, line of sight links. Ground
wave and ionospheric reflection are not covered.

! !UHF freqencies (300-3000 mHz) are line of sight.

8/18/08 7

Performance of a Radio Link
The transmitter side:

! !Assume an isotropic radiator. Radiates power
equally in all directions.

! !Does not exist in reality. A mathematical
construct to compare other antennas to.

! !Assume all of the transmitter power goes into
space.

8/18/08 8

!"#$"%!&

*&

Performance of a Radio Link
Between transmitter and receiver:

! !Signal expands in all directions.
! !At some distance, d, signal covers a sphere with

surface area:

! !Power density, Ps:

!

S= 4" d2

!

PS =
Pt

S
=

Pt

4" d2

8/18/08 9

Performance of a Radio Link

+&

8/18/08 10

!"#$"%!&

,&

Performance of a Radio Link
At the receiver:

! !Aperture : How much of the signal sphere is
ÒcapturedÓ by the receiver antenna.

! !For isotropic antenna, aperture is expressed as an
area:

!

A =
" 2

4#

8/18/08 11

Performance of a Radio Link

+&
-

8/18/08 12

!"#$"%!&

.&

Performance of a Radio Link
! !Signal power at the receiver:

Basic Link equation with isotropic antennas.

!

Pr = APS

=
Pt"

2

4#d()2

8/18/08 13

Performance of a Radio Link
Antenna Gain

! !Antenna is a passive device Ð cannot add power
and may have losses.

! !Gain is power increased in one direction at the
expense of it in another.

8/18/08 14

!"#$"%!&

!&

Performance of a Radio Link
! !Antenna gain: same power over smaller area.
! !I.e. Power density increased.

! !Reciprocity means transmitting gain is also
receive gain for same antenna.

! !Common gains: 2 to 30 db over isotropic.

+&
-

TRANSMITTER
ANTENNA RECEIVER

ANTENNA

8/18/08 15

Performance of a Radio Link
! !Link equation with antenna gains:

! !Tradeoffs:
! !Higher frequency = lower receive power
! !But easier to build high gain antennas at higher

frequency
! !Also lower noise at higher frequency

!

Pr =
PtGtGr"

2

4#d()2

8/18/08 16

!"#$"%!&

$&

Performance of a Radio Link
Noise Sources:

! !Terrestrial, mostly lightning. (HF)
! !Extra-terrestrial, mostly the sun.(VHF through

microwaves)
! !Man-made. (possible at all frequencies, but usually

low frequency)
! !Thermal (all frequencies)
! !Quantizing (only in digital signal processing)
! !Circuit

8/18/08 17

Performance of a Radio Link
 Thermal or Johnson noise.

Dependent on:
! !Absolute Temperature, T (Kelvin)
! !Bandwidth, B (Hz)

!

Pn = 4kTB

k =1.38" 10#23 joules/¡K

8/18/08 18

!"#$"%!&

#%&

Performance of a Radio Link
 Circuit Noise

! !From active devices: transistors and FETs
! !Can be slightly above thermal noise power to

many times thermal noise power.
! !Careful design can minimize circuit noise.

8/18/08 19

Performance of a Radio Link
Quantizing noise

! !Produced by A to D conversion.
! !Proportional to minimum digital level.
! !Also dependant on modulation scheme.
Example: signal is almost exactly between levels

1002 and 1003. Tiny change in voltage leads to
full step. Effectively adding/subtracting about !
bit level.

8/18/08 20

!"#$"%!&

##&

Performance of a Radio Link
How much SNR is enough?

8/18/08 21

Performance of a Radio Link
Comparison of various simple digital systems:

!

Pe,OOK =
1
2

erfc
SNR

2 2

"

$

%

&
'

Pe,FSK =
1
2

erfc
SNR
2

"

$

%

&
'

Pe,PSK =
1
2

erfc
SNR

2

"

$

%

&
'

8/18/08 22

!"#$"%!&

#'&

Performance of a Radio Link
Designing a System Example

! !F = 400 mHz.
! !Pe <= 10-6

! !range = 5 km max.
! !Using PSK, data rate = 50 Kbaud.
! !Required transmitter power = ?

8/18/08 23

Performance of a Radio Link
Noise at Receiver:

! !Bandwidth = 100 kHz
! !Temperature = 300 K
! !Antenna gains of 1
! !Assume average receiver with circuit noise = 2x

thermal noise.

!

Pn = 8kTB

Pn = 3.3" 10#15W

8/18/08 24

!"#$"%!&

#(&

Performance of a Radio Link
Required SNR

!

10" 6 =
1
2

erfc
SNR

2 2

$
%

&

'
(

SNR= 90.4(19.6dB)

8/18/08 25

Performance of a Radio Link
Required Received Power

!

Pr = 90.4" 3.3" 10#15

= 3.0" 10#13W

8/18/08 26

!"#$"%!&

#)&

Performance of a Radio Link
And finally back to the Link Equation:

Énot a whole lot, but more than the USRP can
deliver.

!

3.0" 10#13 =
PtGtGr$

2

4%d()2

Pt = 209mW

8/18/08 27

Sine Wave Generator

8/18/08 28

#!/ usr/bin/env python

#This program is designed to generate sine waves for capture in
files.

from gnuradio import gr
from gnuradio import audio
from gnuradio.eng_option import eng_option
from optparse import OptionParser

class my_top_block(gr.top_block):
 def __init__(self):
 gr.top_block.__init__(self)

Import relevant
libraries

Define class

!"#$"%!&

#*&

Sine Wave Generator

8/18/08 29

parser = OptionParser(option_class=eng_option)
parser.add_option("-O", "--audio-output", type="string", default="Ó,

help="pcm output device name. E.g., hw:0,0 or /dev/dsp")
parser.add_option("-r", "--sample-rate", type="eng_float",
 default=48000, help="set sample rate to RATE (48000)Ó
parser.add_option("-a", "--ampl", type="eng_float", default=.1,
 help="set amplitude (0.1)")
(options, args) = parser.parse_args ()
if len(args) != 0:
 parser.print_help()
 raise SystemExit, 1

 sample_rate = int(options.sample_rate)
 ampl = options.ampl

Sine Wave Generator

8/18/08 30

 src1 = gr.sig_source_f (sample_rate, gr.GR_SIN_WAVE, 440,
 ampl)
 dst = audio.sink (sample_rate, options.audio_output)

 sine_sink = gr.file_sink(gr.sizeof_float, "sine_wave.datÓ)

 self.connect (src1, dst)
 self.connect (src1, sine_sink)

if __name__ == '__main__':
 try:
 my_top_block().run()
 except KeyboardInterrupt:
 pass

!"#$"%!&

#,&

Sine Wave Generator

8/18/08 31

! !Run the program using:

! ! ./ sine_test.py -a 0.5

! !440 Hz tone is heard

! !Data stored in file: sine_wave.dat

! !Import file into MATLAB:

>> sine_wave=read_float_binary('sine_wave.dat');

! !Results in workspace:

Sine Wave Generator

8/18/08 32

! !Sample rate: fs = 48000

! !Sampling interval: ts = 1/fs = 1/48000

! !Number of samples: N = 106111

! !Time Duration: N*ts = 106111/48000 = 2.2 s

!"#$"%!&

#.&

Sine Wave Generator

8/18/08 33

! ! To plot the file data:

 >> fs=48000;

 >> ts=1/fs;
 >> plot([1:length(sine_wave)]*ts,sine_wave)

Only a small segment
of the plot is shown.

T = 1/440 = .00227

Complex Sine Wave Generator

8/18/08 34

 src1 = gr.sig_source_c (sample_rate, gr.GR_SIN_WAVE, 440,
 ampl)

 ctof =gr.complex_to_float()
 dst = audio.sink (sample_rate, options.audio_output)

 sine_sink = gr.file_sink(gr.sizeof_gr_complex,
 "sine_wave_c.dat")

 audio_sink =gr.file_sink(gr.sizeof_float, "audio.dat")

 self.connect (src1, ctof, dst)
 self.connect (ctof, audio_sink)
 self.connect (src1, sine_sink)

!"#$"%!&

#!&

Complex Sine Wave Generator

8/18/08 35

! ! Format for MATLAB with
 >> sine_wave_c=read_complex_binary('sine_wave_c.dat');

Complex Sine Wave Generator

8/18/08 36

 >> subplot(2,1,1)

>> plot(real(sine_wave_c))

>> subplot(2,1,2)
>> plot(imag(sine_wave_c))

I and Q
Components

of the
Complex Sine

Wave

!"#$"%!&

#$&

What are I and Q Components?

8/18/08 37

! !A signal s(t) is represented as:
! !s(t) = I(t) cos ! ot + Q(t) sin ! ot

! !Advantages of I and Q representation:
! !Complex mixing shifts in one direction, not both

x cos ! ot

-! o ! o

x exp (j! ot)

! o

What are I and Q Components

8/18/08 38

! !Properties of I and Q signals
! !Magnitude: M = sqrt (I2 + Q2)
! !Phase: tan-1 Q/I

! !Baseband signals are represented in software as complex
numbers

! !I and Q signals are generated by USRP and various
daughterboards

!"#$"%!&

'%&

Filtering

8/18/08 39

! !Filtering is common component in
communications systems

! !GNU Radio implements two types of digital
filters: FIR and IIR filters

! !FIR filters are commonly used Ð linear phase

Station A Station B Station C Filter Station B

Linear Phase Filters

8/18/08 40

! !For an input: x(t) = Xm cos(2"f1t)
! !The output will be: y(t) = Xm|H(f 1)| cos(2"f1t+" (f1))
! !Example: Ideal Low Pass filter:

! !Linear Phase: " (f) = - ("/2)f
! !Non-linear Phase: " (f) = - tan-1(10f)

H(f) = | H(f)|ej" (f) x(t) y(t)

f

| H(f)|

!"#$"%!&

'#&

Linear Phase Filters

8/18/08 41

! ! If we apply a signal: x(t) = cos(2"f) + cos(4"f)
! ! Linear Phase Filter Output: " (f) = - ("/2)f

 y(t) = cos(2"f-"/2) + cos(4"f-")
! ! Non-linear Phase Filter Output: " (f) = - tan-1(10f)

 y(t) = cos(2"f-tan-1(10)) + cos(4"f-tan-1(20))
! ! MATLAB:

 >> t=0:.01:4;
 >> x = cos(2*pi*t)+cos(4*pi*t);
 >> x2 = cos(2*pi*t-pi/2)+cos(4*pi*t-pi);
 >> x1 = cos(2*pi*t-atan(10))+cos(4*pi*t-atan(20));
 >> subplot(3,1,1), plot(t,x)
 >> subplot(3,1,2), plot(t,x2)
 >> subplot(3,1,3), plot(t,x1)

Linear Phase Filters

8/18/08 42

!"#$"%!&

''&

FIR Filter

8/18/08 43

! !For any linear system:

! !For a finite impulse response filter (FIR):

! !If N=3 (3rd order filter):
!

yn = xn " hn = xn# j h j
j=0

$

%

!

yn = xn " hn = xn# jh j
j=0

N

$ = xnh0 + xn#1h1 + xn#2h2 + ...+ xn#NhN

!

yn = xn " hn = xn# j h j
j=0

3

$ = xnh0 + xn#1h1 + xn#2h2 + xn#3h3

FIR Filters

8/18/08 44

! !The standard form of a FIR filter:

Unit Delay Unit Delay Unit Delay xn
xn-1 xn-2 xn-3

!

yn = xn " hn = xn# j h j
j=0

3

$ = xnh0 + xn#1h1 + xn#2h2 + xn#3h3

ho h1 h2 h3

#$ yn

!"#$"%!&

'(&

Using GNU Radio to Design FIR Filters

8/18/08 45

! !Compute coefficients (hn)
! !Use MATLAB or other filter design software
! !Use GNU Radio : optfir (optimal filter design)
! !Use GNU Radio: firdes (uses windowing

method)
! !Implement filter with coefficients

! !freq_xlating_fir_filter_ccf
! !fir_filter_ccf

Example: Low Pass Filter Design

8/18/08 46

! !Design a low pass filter to pass signals at 1KHz and
block signals at 2KHz

| H(jf)| dB

 0
-0.1

 -60

1500 1800

1000 2000

!"#$"%!&

')&

Filter Test Script

8/18/08 47

 src0 = gr.sig_source_c (sample_rate, gr.GR_SIN_WAVE, 1000, ampl)
 src1 = gr.sig_source_c (sample_rate, gr.GR_SIN_WAVE, 2000, ampl)

 summer = gr.add_cc()

#$ Filter C to F Speaker

src0

src1

Filter Test Script

8/18/08 48

 #create the channel filter coefficients
 chan_taps = optfir.low_pass(
 1.0, #Filter gain
 48000, #Sample Rate
 1500, #one sided modulation BW (edge of passband)
 1800, #one sided channel BW (edge of stopband)
 0.1, #Passband ripple
 60) #Stopband Attenuation

 print "Channel filter taps:", len(chan_taps)

 #creates the channel filter with the coef found above
 chan = gr.freq_xlating_fir_filter_ccf(
 1, #Decimation rate
 chan_taps, #coefficients
 0, #Offset frequency - could be used to shift
 48e3) #incoming sample rate

! !

| H(jf)| dB

 0
-0.1

 -60

1500 1800

1000 2000

!"#$"%!&

'*&

Filter Test Script

8/18/08 49

 summer_sink = gr.file_sink(gr.sizeof_gr_complex, "sum_c.dat")
 filter_sink = gr.file_sink(gr.sizeof_gr_complex, "filter.dat")

 ctof =gr.complex_to_float()
 dst = audio.sink (sample_rate, options.audio_output)

 self.connect (src0, (summer, 0))
 self.connect (src1, (summer, 1))

 self.connect (summer, chan, ctof, dst)
 self.connect (chan, filter_sink)
 self.connect (summer, summer_sink)

Filter Test Script Output

8/18/08 50

! ! 436 taps were required
! ! Two data files are generated: sum_c.dat and filter.dat
! ! Using the following MATLAB commands:

 >> fs=48000;
 >> ts=1/fs;
 >> sum=read_complex_binary('sum_c.dat');
 >> filtered=read_complex_binary('filter.dat');
 >> subplot(2,1,1)
 >> plot([1:500]*ts,real(sum(1:500)))
 >> subplot(2,1,2)
 >> plot([1:500]*ts,real(filtered(1:500)))

!"#$"%!&

',&

Filter Test Script Output

8/18/08 51

