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Software Defined Radio Basics: The 
Link Equation, Sources, and Filters 

Overview 
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! !Preparing for the Fall 
! !The Link Equation 
! !Signal Representation 
! !Examining GNU Radio Data in MATLAB 
! !Filtering in GNU Radio 
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Fall Meetings/Work Plan 
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! !Undergraduates 
! !On campus meeting time 
! ! Additional members 

! !Graduates 
! !Meeting time 
! !Possible projects 

! !Future Topics 
! !Digital Communications 
! !Packet communications 
! !GUI Interfaces - WxPython 

Performance of a Radio Link 
! !To determine how well a link performs, we need 

to know: 
  -Signal to noise ratio at receiver 
  -Modulation scheme 

CAN YOU HEAR ME         

NOW? 
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Performance of a Radio Link 
In analog systems, performance is subjective. 
In digital systems, performance is precisely 

specified as Probability of Error, Pe. 

In digital systems, Pe determined by modulation 
scheme and Signal to Noise Ratio, SNR. 

! 

Pe =
number of errors in n bits

n
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Performance of a Radio Link 
! !SNR at receiver crucial in determining link 

performance. 

! !May be expressed in dB. 

! 

SNR=
signal power at receiver
noise power at receiver
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Performance of a Radio Link 
! !Signal Power at Receiver determined by LINK 

EQUATION 

! !Also known as the Friis Equation 

! !Used to compute power levels at receiver based on 
distance, transmitter power and antenna gain. 

! !Used only for free-space, line of sight links.  Ground 
wave and ionospheric reflection are not covered. 

! !UHF freqencies (300-3000 mHz) are line of sight. 
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Performance of a Radio Link 
The transmitter side: 

! !Assume an isotropic radiator.  Radiates power 
equally in all directions. 

! !Does not exist in reality.  A mathematical 
construct to compare other antennas to. 

! !Assume all of the transmitter power goes into 
space. 
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Performance of a Radio Link 
Between transmitter and receiver: 

! !Signal expands in all directions. 
! !At some distance, d, signal covers a sphere with 

surface area: 

! !Power density, Ps: 

! 

S= 4" d2

! 

PS =
Pt

S
=

Pt

4" d2
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Performance of a Radio Link 

+&
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Performance of a Radio Link 
At the receiver: 

! !Aperture : How much of the signal sphere is 
ÒcapturedÓ by the receiver antenna. 

! !For isotropic antenna, aperture is expressed as an 
area: 

! 

A =
" 2

4#
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Performance of a Radio Link 

+&
-
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Performance of a Radio Link 
! !Signal power at the receiver: 

Basic Link equation with isotropic antennas. 

! 

Pr = APS

=
Pt"

2

4#d( )2
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Performance of a Radio Link 
Antenna Gain 

! !Antenna is a passive device Ð cannot add power 
and may have losses. 

! !Gain is power increased in one direction at the 
expense of it in another. 
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Performance of a Radio Link 
! !Antenna gain: same power over smaller area. 
! !I.e. Power density increased. 

! !Reciprocity means transmitting gain is also 
receive gain for same antenna. 

! !Common gains: 2 to 30 db over isotropic. 

+&
-

TRANSMITTER 
ANTENNA RECEIVER 

ANTENNA 
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Performance of a Radio Link 
! !Link equation with antenna gains: 

! !Tradeoffs:   
! !Higher frequency = lower receive power 
! !But easier to build high gain antennas at higher 

frequency 
! !Also lower noise at higher frequency 

! 

Pr =
PtGtGr"

2

4#d( )2
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Performance of a Radio Link  
Noise Sources: 

! !Terrestrial, mostly lightning. (HF) 
! !Extra-terrestrial, mostly the sun.(VHF through 

microwaves) 
! !Man-made. (possible at all frequencies, but usually 

low frequency) 
! !Thermal (all frequencies) 
! !Quantizing (only in digital signal processing) 
! !Circuit 
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Performance of a Radio Link 
   Thermal or Johnson noise. 

Dependent on: 
! !Absolute Temperature, T (Kelvin) 
! !Bandwidth, B (Hz) 

! 

Pn = 4kTB

k =1.38" 10#23 joules/¡K
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Performance of a Radio Link 
    Circuit Noise 

! !From active devices: transistors and FETs 
! !Can be slightly above thermal noise power to 

many times thermal noise power. 
! !Careful design can minimize circuit noise. 
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Performance of a Radio Link 
Quantizing noise 

! !Produced by A to D conversion.   
! !Proportional to minimum digital level. 
! !Also dependant on modulation scheme. 
Example:  signal is almost exactly between levels 

1002 and 1003.  Tiny change in voltage leads to 
full step.  Effectively adding/subtracting about ! 
bit level. 
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Performance of a Radio Link 
How much SNR is enough? 
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Performance of a Radio Link 
Comparison of various simple digital systems: 

! 

Pe,OOK =
1
2

erfc
SNR

2 2

" 

# 
$ 

% 

& 
' 

Pe,FSK =
1
2

erfc
SNR
2

" 

# 
$ 

% 

& 
' 

Pe,PSK =
1
2

erfc
SNR

2

" 

# 
$ 

% 

& 
' 
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Performance of a Radio Link 
Designing a System Example 

! !F = 400 mHz. 
! !Pe <= 10-6 

! !range = 5 km max. 
! !Using PSK, data rate = 50 Kbaud. 
! !Required transmitter power = ? 
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Performance of a Radio Link 
Noise at Receiver: 

! !Bandwidth = 100 kHz 
! !Temperature = 300 K 
! !Antenna gains of 1 
! !Assume average receiver with circuit noise = 2x 

thermal noise. 

! 

Pn = 8kTB

Pn = 3.3" 10#15W
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Performance of a Radio Link 
Required SNR 

! 

10" 6 =
1
2

erfc
SNR

2 2

# 

$ 
% 

& 

' 
( 

SNR= 90.4(19.6dB)
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Performance of a Radio Link 
Required Received Power 

! 

Pr = 90.4" 3.3" 10#15

= 3.0" 10#13W
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Performance of a Radio Link 
And finally back to the Link Equation: 

Énot a whole lot, but more than the USRP can 
deliver. 

! 

3.0" 10#13 =
PtGtGr$

2

4%d( )2

Pt = 209mW
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Sine Wave Generator 
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#!/ usr/bin/env python 

#This program is designed to generate sine waves for capture in 
files. 

from gnuradio import gr 
from gnuradio import audio 
from gnuradio.eng_option import eng_option 
from optparse import OptionParser 

class my_top_block(gr.top_block): 
    def __init__(self): 
        gr.top_block.__init__(self) 

Import relevant 
libraries 

Define class 
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Sine Wave Generator 
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parser = OptionParser(option_class=eng_option) 
parser.add_option("-O", "--audio-output", type="string", default="Ó,  

help="pcm output device name.  E.g., hw:0,0 or /dev/dsp") 
parser.add_option("-r", "--sample-rate", type="eng_float",  
                          default=48000,  help="set sample rate to RATE (48000)Ó 
parser.add_option("-a", "--ampl", type="eng_float", default=.1, 
                          help="set amplitude (0.1)") 
(options, args) = parser.parse_args () 
if len(args) != 0: 
        parser.print_help() 
        raise SystemExit, 1 

        sample_rate = int(options.sample_rate) 
        ampl = options.ampl 

Sine Wave Generator 
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        src1 = gr.sig_source_f (sample_rate, gr.GR_SIN_WAVE, 440,    
                ampl) 
      dst = audio.sink (sample_rate, options.audio_output) 

   sine_sink = gr.file_sink(gr.sizeof_float, "sine_wave.datÓ) 

      self.connect (src1, dst) 
   self.connect (src1, sine_sink) 

if __name__ == '__main__': 
    try: 
        my_top_block().run() 
    except KeyboardInterrupt: 
        pass 
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Sine Wave Generator 
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! !Run the program using: 

! !  ./ sine_test.py  -a  0.5 

! !440 Hz tone is heard 

! !Data stored in file:  sine_wave.dat 

! !Import file into MATLAB: 

>> sine_wave=read_float_binary('sine_wave.dat'); 

! !Results in workspace:   

Sine Wave Generator 
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! !Sample rate:  fs = 48000 

! !Sampling interval:  ts = 1/fs = 1/48000 

! !Number of samples:  N = 106111 

! !Time Duration:  N*ts = 106111/48000 = 2.2 s 
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Sine Wave Generator 
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! ! To plot the file data: 

       >> fs=48000; 

       >> ts=1/fs; 
       >> plot([1:length(sine_wave)]*ts,sine_wave) 

Only a small segment 
of the plot is shown. 

T = 1/440 =   .00227 

Complex Sine Wave Generator 
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     src1 = gr.sig_source_c (sample_rate, gr.GR_SIN_WAVE, 440,  
                ampl) 

 ctof =gr.complex_to_float() 
     dst = audio.sink (sample_rate, options.audio_output) 

 sine_sink = gr.file_sink(gr.sizeof_gr_complex,  
                         "sine_wave_c.dat") 

 audio_sink =gr.file_sink(gr.sizeof_float, "audio.dat") 

     self.connect (src1, ctof, dst) 
 self.connect (ctof, audio_sink) 
 self.connect (src1, sine_sink) 
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Complex Sine Wave Generator 
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! !     Format for MATLAB with 
 >> sine_wave_c=read_complex_binary('sine_wave_c.dat'); 

Complex Sine Wave Generator 
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 >> subplot(2,1,1) 

>> plot(real(sine_wave_c)) 

>> subplot(2,1,2) 
>> plot(imag(sine_wave_c)) 

I and Q 
Components 

of the 
Complex Sine 

Wave 
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What are I and Q Components? 
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! !A signal s(t) is represented as: 
! !s(t) = I(t) cos ! ot + Q(t) sin ! ot 

! !Advantages of I and Q representation: 
! !Complex mixing shifts in one direction, not both 

x   cos ! ot 

-! o ! o 

x   exp (j! ot) 

! o 

What are I and Q Components 
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! !Properties of I and Q signals 
! !Magnitude:  M = sqrt (I2 + Q2) 
! !Phase:  tan-1 Q/I 

! !Baseband signals are represented in software as complex 
numbers 

! !I and Q signals are generated by USRP and various 
daughterboards 
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Filtering 
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! !Filtering is common component in 
communications systems 

! !GNU Radio implements two types of digital 
filters:  FIR and IIR filters 

! !FIR filters are commonly used Ð linear phase 

Station A Station B Station C Filter Station B 

Linear Phase Filters 
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! !For an input:  x(t) = Xm cos(2"f1t) 
! !The output will be:  y(t) = Xm|H(f 1)| cos(2"f1t+" (f1))   
! !Example:  Ideal Low Pass filter: 

! !Linear Phase:  " (f) = - ("/2)f 
! !Non-linear Phase:  " (f) = - tan-1(10f)  

H(f) = | H(f)|ej" (f) x(t) y(t) 

f 

| H(f)| 
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Linear Phase Filters 
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! ! If we apply a signal:  x(t) = cos(2"f) + cos(4"f) 
! ! Linear Phase Filter Output:  " (f) = - ("/2)f 

    y(t) = cos(2"f-"/2) + cos(4"f-") 
! ! Non-linear Phase Filter Output:  " (f) = - tan-1(10f)    

    y(t) = cos(2"f-tan-1(10)) + cos(4"f-tan-1(20)) 
! ! MATLAB: 

 >> t=0:.01:4; 
 >> x = cos(2*pi*t)+cos(4*pi*t); 
 >> x2 = cos(2*pi*t-pi/2)+cos(4*pi*t-pi); 
 >> x1 = cos(2*pi*t-atan(10))+cos(4*pi*t-atan(20)); 
 >> subplot(3,1,1), plot(t,x) 
 >> subplot(3,1,2),  plot(t,x2) 
 >> subplot(3,1,3), plot(t,x1) 

Linear Phase Filters 
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FIR Filter 
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! !For any linear system: 

! !For a finite impulse response filter (FIR): 

! !If N=3 (3rd order filter): 
! 

yn = xn " hn = xn# j h j
j=0

$

%

! 

yn = xn " hn = xn# jh j
j=0

N

$ = xnh0 + xn#1h1 + xn#2h2 + ...+ xn#NhN

! 

yn = xn " hn = xn# j h j
j=0

3

$ = xnh0 + xn#1h1 + xn#2h2 + xn#3h3

FIR Filters 

8/18/08 44 

! !The standard form of a FIR filter: 

Unit Delay Unit Delay Unit Delay xn 
xn-1 xn-2 xn-3 

! 

yn = xn " hn = xn# j h j
j=0

3

$ = xnh0 + xn#1h1 + xn#2h2 + xn#3h3

ho h1 h2 h3 

#$ yn 
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Using GNU Radio to Design FIR Filters 
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! !Compute coefficients (hn) 
! !Use MATLAB or other filter design software 
! !Use GNU Radio :  optfir  (optimal filter design) 
! !Use GNU Radio:  firdes  (uses windowing 

method) 
! !Implement filter with coefficients 

! !freq_xlating_fir_filter_ccf 
! !fir_filter_ccf 

Example:  Low Pass Filter Design 
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! !Design a low pass filter to pass signals at 1KHz and 
block signals at 2KHz 

| H(jf)| dB 

     0 
-0.1 

 -60 

1500           1800 

1000                          2000 
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Filter Test Script 
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 src0 = gr.sig_source_c (sample_rate, gr.GR_SIN_WAVE, 1000, ampl) 
 src1 = gr.sig_source_c (sample_rate, gr.GR_SIN_WAVE, 2000, ampl) 

 summer = gr.add_cc() 

#$ Filter C to F Speaker 

src0 

src1 

Filter Test Script 
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 #create the channel filter coefficients 
 chan_taps = optfir.low_pass( 
  1.0,  #Filter gain 
  48000,  #Sample Rate 
  1500, #one sided modulation BW (edge of passband) 
  1800,   #one sided channel BW (edge of stopband) 
  0.1,  #Passband ripple 
  60)  #Stopband Attenuation 

 print "Channel filter taps:", len(chan_taps) 

 #creates the channel filter with the coef found above 
 chan = gr.freq_xlating_fir_filter_ccf( 
               1,  #Decimation rate 
               chan_taps,  #coefficients 
               0,  #Offset frequency - could be used to shift  
               48e3)  #incoming sample rate 

! !   

| H(jf)| dB 

     0 
-0.1 

 -60 

1500           1800 

1000                          2000 
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Filter Test Script 
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     summer_sink = gr.file_sink(gr.sizeof_gr_complex, "sum_c.dat") 
 filter_sink = gr.file_sink(gr.sizeof_gr_complex, "filter.dat") 

 ctof =gr.complex_to_float() 
     dst = audio.sink (sample_rate, options.audio_output) 

      self.connect (src0, (summer, 0)) 
      self.connect (src1, (summer, 1)) 

  self.connect (summer, chan, ctof, dst) 
  self.connect (chan, filter_sink) 
  self.connect (summer, summer_sink) 

Filter Test Script Output 
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! ! 436 taps were required 
! ! Two data files are generated:  sum_c.dat and filter.dat 
! ! Using the following MATLAB commands: 

  >> fs=48000; 
  >> ts=1/fs; 
  >> sum=read_complex_binary('sum_c.dat'); 
  >> filtered=read_complex_binary('filter.dat'); 
  >> subplot(2,1,1) 
  >> plot([1:500]*ts,real(sum(1:500))) 
  >> subplot(2,1,2) 
  >> plot([1:500]*ts,real(filtered(1:500))) 



!"#$"%!&

',&

Filter Test Script Output 
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