

ANATOMY

Key Points

- Difference between strength, power, endurance
- Different types of endurance
- Torque vs. force
- Increasing muscle force
- Fitness-Fatigue Model
- Impulse Momentum

PART II: TECHNIQUES

PART III: PROGRAM DESIGN

Indications

∎?

Contraindications

- Pain
- Increased edema
- Surgical / physician constraints

Acute Program Variables

- Choice of exercise
- Intensity
- Tempo
- Number of Repetitions
- Number of Sets
- Volume
- Rest Intervals
- Number of Sessions
- Frequency

Choice of Exercise

- Isometric vs. Dynamic
- Open vs. Closed Chain
- Machine vs. Free Weight
- Type of Resistance
 - Manual
 - Elastic
 - Isotonic Body weight & Free weight
 - Isokinetic

"Advantages" of Closed Chain Activities

- Stimulation of proprioceptors
- Increased joint congruency & stability
- Decreased shear forces
- Enhanced dynamic stability
- More "functional"

Prentice, 1999

Definitions

Steindler , 1955

- Open chain a combination in which the terminal joint is free.
- Closed chain one in which the terminal joint meets with some "considerable external resistance" which prohibits or restrains free movement.

More definitions

- Closed chain distal end is fixed (Zatsiorsky, 1998).
- Closed chain motion of one [segment] at one joint will produce motion at all other joints in the system in a predictable manner (Levangie & Norkin, 2001).

Alternate Classifications?			
Dillman, Murray, & Hintermeister, J Sport Rehab, 1994		Boundary	
		Fixed	Movable
External	External Load	FEL	MEL
Load	No Load	\succ	MNL

What does EMG tell us about movement classification?

	Multiple Joints	
WEIGHT BEARING	Linear Resistance	
NON-WEIGHT BEARING	Single Joint	
	Angular Resistance	

No easy classification

- Distal vs. Proximal End MovingSingle vs. Multiple Joints
- Angular vs. Linear Resistance
- Machine vs. Free Weight
- Seated vs. Standing vs. Prone

Rationale: CC & Safety

- Decreased Shear Force
- Increased Co-contraction
- CC movements are harder to control

Shear forces a function of...

Wilk et al, Am J Sports Med, 1996 Escamilla et al, MSSE, 1998 Kvist et al, Am J Sports Med, 2001

Co-Contraction

- Function of free-weights vs. machines?
- Does not affect anterior shear forces at knee
- Over-rated?

No epidemiological evidence...

- Shear forces are pathologic
- Free weights are more injurious than machines

Comparisons across studies difficult...

- Subject Population
- Intervention Duration
- Number of Exercises
- Amount and Type of Resistance
- Outcome Measures

Eight studies, no differences...

- Strength
- Pain
- Functional Performance
- Proprioception
- Joint Laxity?

Combined OC/CC appears superior to either one separately!

Intensity

- Dictates all other variables
- RM Continuum

Tempo

- Important to remember your biomechanics:
 - Force velocity
 - Impulse momentum

Tempo

Important to remember your biomechanics: Force – velocity

Impulse – momentum

Bandy et al., Phys Ther, 1997

Remember, impulse must be zero				
% RM	Movement	Deceleration	Source	
50%	Squat	35%	Flanagan & Salem*	
45%	Bench Press	40%	Newton et al, 1996	
25% Squat 45% Flanagan & Salem				
* Preliminary unpublished data				

Number of Reps / Sets

- DeLorme (DeLorme & Watkins)
- Oxford
- Aggressive Resistance Training Program
- DAPRE
- Performance-Based Periodization

_	DeLorme (DeLorme & Watkins, 1945)			
	Set	Load	Reps	
	1	50% of 10 RM	10	
	2	75% of 10 RM	10	
	3	100% of 10 RM	10	

Oxford (Zinovieff, 1951)			
Set	Load	Reps	
1	100% of 10 RM	10	
2	75% of 10 RM	10	
3	50% of 10 RM	10	

-	Aggressive Resistance Training Program (Stone and Kroll, 1982)			
	Set	Load	Reps	
	1	50% of 4 RM	8	
	2	80% of 4 RM	8	
	3	90% of 4 RM	6	
	4	95% of 4 RM	4	
	5	100% of 4 RM	4	

DAPRE (Knight, 1985)			
Set	Load	Reps	
1	50% of Working	10	
2	75% of Working	6	
3	100% of Working	Max	
4	Adjusted Working	Max	

DAPRE Adjustments			
Number of	Adjustments		
Reps / Set	4 th Set	Next Day	
0-2	↓ 5-10 lbs	↓ 5-10 lbs	
3-4	↓ 0-5 lbs	Keep same	
5-7	Keep same	↑ 5-10 lbs	
8-12	↑ 5-10 lbs	↑ 5-15 lbs	
13+	↑ 10-15 lbs	↑ 10-20 lbs	

Performance-Based Periodization (Flanagan, 2001)

- Planned variables: load and rest periods
- Target: volume
- Performance variables: reps and sets
- Adjustments

Rest Intervals

■ 90 sec?

Frequency

■ 2 – 3 times per week?

