Problem of the Week 9, Spring 2006

Solution by the organizers (Based on Euler’s original proof 1738). We will prove that the only rational solutions to the equation \(m^2 - n^3 = 1 \) are \((m, n) = (-1, 0), (1, 0), (0, -1), (3, 2), (-3, 2)\). If \(n = 0 \) then \(m = \pm 1 \) are all possible solutions, similarly if \(m = 0 \) then \(n = -1 \) is the only solution. Suppose \(n, m \neq 0 \) and \(n = a/b \) with \(a, b \in \mathbb{Z}, b > 0, \) and \(\gcd(a, b) = 1 \). Then

\[
m^2b^4 = a^3b + b^4,
\]

that is \(b(a^3 + b^3) = b(a + b)(a^2 - ab + b^2) \) is a non-zero square. Let \(c = a + b \), then equation (1) becomes

\[
m^2b^4 = bc(3b^2 - 3bc + c^2).
\]

If \(c = 3b \) then \(a = 2b \) and \(n = 2 \) which gives the solutions \(m = \pm 3 \). From now on assume \(c \neq 3b \). Notice that \(\gcd(b, c) = \gcd(b, a + b) = \gcd(b, a) = 1 \) and \(\gcd(3b^2 - 3bc + c^2, b) = \gcd(c^2, b) = 1 \). Assume that the pair \((b, c)\) satisfies that \(|b| \) is as small as possible such that the right-hand side of (2) is a square. We will show that, once \(c = 3b \) is excluded, there are no other solutions by the method of infinite descent. That is we will find a new pair \((b', c')\) with \(|b'| < b\). To do this we first divide in two cases.

Case 1 3 does not divide \(c \).

Then \(\gcd(3b^2 - 3bc + c^2, c) = \gcd(3b^2, c) = \gcd(b^2, c) = 1 \). Thus in equation (2) we have the product of three integers pairwise coprime which equals a square. Additionally \(b > 0 \) and \(3b^2 - 3bc + c^2 \geq 3(b - c/2)^2 \geq 0 \). Thus each of \(b, c, \) and \(3b^2 - 3bc + c^2 \) are squares. Then there are positive integers \(p \) and \(q \) such that \(\gcd(p, q) = 1 \) and

\[
3b^2 - 3bc + c^2 = \left(\frac{b^2}{p^2} - c \right)^2 = \frac{b^2p^2}{q^2} - \frac{2bpq}{q} + c^2.
\]

Thus

\[
\frac{b}{c} = \frac{3q^2 - 2pq}{3q^2 - p^2}.
\]

Now we divide in two subcases.

Case 1.1. 3 does not divide \(p \).

Suppose \(P \) is a prime common divisor of \(3q^2 - 2pq \) and \(3q^2 - p^2 \). Then either \(P|q \) or \(P|(3q - 2p) \). If \(P|q \) then \(P|p^2 \) which is a contradiction since \(\gcd(p, q) = 1 \). Thus \(P|(3q - 2p) \) on the other hand \(P|(3q^2 - 2pq) - (3q^2 - p^2) = p^2 - 2pq \). Thus either \(P|p \) or \(P|(p - 2q) \). If \(P|p \) then \(P|3q^2 \) but \(P \neq 3 \) (since 3 does not divide \(p \)), so \(P|q^2 \) which is a contradiction. Therefore we must have that \(P|(p - 2q) \). Thus \(P|(3q - 2p) + 2(p - 2q) = -q \) which is a case we considered before. Therefore our conclusion is that \(\gcd(3q^2 - 2pq, 3q^2 - p^2) = 1 \).
This implies that \(b = 3q^2 - 2pq \) and \(c = 3q^2 - p^2 \) or \(b = 2pq - 3q^2 \) and \(c = p^2 - 3q^2 \). However since \(c \) is a square we must have \(c \equiv 0, 1 \pmod{4} \) and \(3q^2 - p^2 \equiv 3, 2 \pmod{4} \) since we cannot have both \(p \) and \(q \) even. Therefore the first option is discarded and we have that

\[
b = 2pq - 3q^2 \quad \text{and} \quad c = p^2 - 3q^2.
\]

Now recall that \(c \) is a square, so there are positive integers \(r, s \) with \(\gcd(r, s) = 1 \) such that

\[
p^2 - 3q^2 = \left(p - \frac{r}{s}q \right)^2 = p^2 - \frac{2pqr}{s} + \frac{r^2q^2}{s^2}.
\]

This implies that

\[
\frac{p}{q} = \frac{r^2 + 3s^2}{2rs}
\]

and

\[
\frac{b}{q^2} = \frac{2p}{q} - 3 = \frac{3s^2 - 3rs + r^2}{rs},
\]

which means that

\[
\frac{r^2s^2b}{q^2} = rs \left(3s^2 - 3rs + r^2 \right)
\]

and the left-hand side of the equation is a square since \(b \) is a square, thus we obtained an equation of the same form as (2) but \(0 < s < b \) which we will check later.

Case 1.2. 3 divides \(p \).

Let \(p = 3P \) then equation (3) becomes

\[
\frac{b}{c} = \frac{q^2 - 2Pq}{q^2 - 3P^2}.
\]

By an argument similar to the previous case we can check that \(\gcd(q^2 - 2Pq, q^2 - 3P^2) = 1 \). And again similarly to last case \(3P^2 - q^2 \) cannot be a square because it fails modulo 4. Therefore we must have

\[
q^2 - 3P^2 = c \quad \text{and} \quad q^2 - 2Pq = b.
\]

But \(c \) is a square, so there are positive integers \(r, s \) such that

\[
q^2 - 3P^2 = \left(q - \frac{r}{s}P \right)^2 = q^2 - \frac{2qrP}{s} + \frac{r^2P^2}{s^2}.
\]

This implies that

\[
\frac{2P}{q} = \frac{4sr}{3s^2 + r^2}
\]
First note that

\[\text{gcd}(q/p) \text{ was excluded to begin with.} \]

Claim 3 In Case 1.1 we have that \(0 < s < b \).

Proof. First note that \(b = q (2p - 3q) \) so we have that \(0 < q \leq b \). Also we know that \(q/p = 2rs/(r^2 + 3s^2) \). Now note that \(\text{gcd}(s, r^2 + 3s^2) = \text{gcd}(s, r^2) = 1 \) and \(\text{gcd}(r, r^2 + 3s^2) = \text{gcd}(r, 3s^2) = \text{gcd}(r, 3) \). Therefore \(2rs \) and \(r^2 + 3s^2 \) have a greatest common factor of 1, 2, 3 or 6. So if \(3 \nmid r \) then the greatest common factor is 2, thus \(q = rs \) or \(q = 2rs \) and consequently \(s \leq q \). On the other hand if \(3|r \) then the greatest common factor is 3 or 6. Thus \(q = rs/3 \) or \(2rs/3 \) and consequently \(rs/3 \leq q \).

However \(3 \leq r \), thus \(s \leq q \). In any case we conclude that \(0 < s \leq q \leq b \).

Equality occurs if \(b = q \) which implies that \(2p - 3q = 1 \) and then

\[
4c = 4 \left(p^2 - 3q^2 \right) = (2p)^2 - 12q^2 = (1 + 3q)^2 - 12q^2 = 1 + 6q - 3q^2 = 1 + 6b - 3b^2.
\]

But \(c \) is a square, thus \(6b - 3b^2 + 1 = 3b(2 - b) + 1 > 0 \). But if \(b > 2 \) then \(3b(2 - b) < -6 \). Also if \(b = 2 \) then \(1 = 2p - 3b = 2p - 6 \) which is impossible by parity; and finally if \(b = 1 \) then \(c = 1 \) which gives \(a = 0 \) that was excluded to begin with. ■
Claim 4 In Case 1.2 we have that $0 < |t| < b$.

Proof. Similarly to last case $b = q (q - 2P)$, so $0 < q \leq b$. Also $P/q = 2sr / (3s^2 + r^2)$ and again $\gcd (2sr, 3s^2 + r^2)$ is either 1, 2, 3, or 6. In all cases we can deduce that $q \geq (3s^2 + r^2)/6$. We have that $s = (u - t)/2$ and $r = (u - 3t)/2$ thus

\[
q \geq \frac{1}{6} \left(3 \left(\frac{u - t}{2}\right)^2 + \left(\frac{u - 3t}{2}\right)^2\right) \tag{4}
\]

\[
\geq \frac{1}{4} (u^2 - 4ut + 5t^2)
\]

\[
\geq \frac{1}{4} ((u - 2t)^2 + t^2).
\]

If $|t| \geq 4$ then $t^2 \geq 4|t|$ and consequently $q \geq |t| > 0$. If $|t| = 3$ and $(u - 2t) \neq 0$ then $(u - 2t)^2 + t^2 \geq 10$ and then $q \geq 3 = |t|$. Otherwise $u - 2t = 0$ and $s = 3t/2$ which is not an integer. If $|t| = 2$ and $|u - 2t| \geq 2$ then $(u - 2t)^2 + t^2 \geq 8$ and thus $q \geq |t|$. The other possibilities are as follows, if $u - 2t = 0$ then $r = -t/2$ and $s = 3t/2$ which is impossible since both must be positive. If $u - 2t = \pm 1$ then $s = (t \pm 1)/2$ which is not an integer. If $|t| = 1$ then since q is an integer we must have $q \geq 1 = |t|$. Finally, if $t = 0$ then $s = r = u/2$ which implies that $P = 1, q = 2$, and $b = 0$ which is impossible.

In all possibilities we obtain $q \geq |t| > 0$, with equality if $b = q$ which implies that $b - 2P = q - 2P = 1$ and then

\[
c = q^2 - 3P^2 = b^2 - 3 \left(\frac{b - 1}{2}\right)^2
\]

\[
= \frac{(b + 3)^2 - 12}{4}.
\]

But c is a square, say $c = C^2$, then the last equation becomes $12 = (b + 3)^2 - (2C)^2 = (b + 3 + 2C)(b + 3 - 2C)$, and since both factors must be even in order for b to be integer we must have $b + 3 + 2C = 6$ and $b + 3 - 2C = 2$ which gives $b = C = 1$ and then $a = c - b = C^2 - b = 0$ which was excluded. Thus equality never happens. □