As every Calculus student (hopefully) knows, the formula

\[(f(x)g(x))' = f'(x)g(x) \]

is false in general. However it is true for some particular functions. Find two non-constant functions \(f \) and \(g \) that satisfy this formula.

Solution by Humberto Raya.

When we talk about differentiation, it becomes beneficial to talk about exponential functions and their interesting properties.

For this problem consider:

\[
\begin{align*}
 f(x) &= \exp(mx) \\
 g(x) &= \exp(nx),
\end{align*}
\]

for non-zero, non-one numbers \(m \) and \(n \).

Their derivatives would be:

\[
\begin{align*}
 f'(x) &= m \exp(mx) \\
 g'(x) &= n \exp(nx).
\end{align*}
\]

By the Chain Rule we would have that

\[
(f(x)g(x))' = f(x)g'(x) + g(x)f'(x) \\
= \exp(mx) \exp(nx) + \exp(nx) \exp(mx) \\
= (m+n)\exp((m+n)x).
\]

Note that

\[
f'(x)g'(x) = m \exp(mx) n \exp(nx) \\
= mn \exp((m+n)x).
\]

In order for \((f(x)g(x))' = f'(x)g'(x)\) we must have that

\[
(m+n)\exp((m+n)x) = mn \exp((m+n)x)
\]

By dividing both sides by \(\exp((m+n)x) \) we’ll see that we need:

\[m+n = mn \]

By algebra we have that \(n = mn - m = (n-1)m \) and so \(m = n/(n-1) \).

In particular, let \(n = 2 \) so that \(m = 2 \).

Then \(f(x) = \exp[2x] \) and \(g(x) = \exp[2x] \) and we’ll have what we wanted:

\[
\begin{align*}
 [f(x)g(x)]' &= \exp[2x]2 \exp[2x] + \exp[2x]2 \exp[2x] \\
 &= 2 \exp[4x] + 2 \exp[4x] \\
 &= 4 \exp[4x] \\
 &= [2 \exp[2x]] [2 \exp[2x]] \\
 &= f'(x)g'(x)
\end{align*}
\]