Let a and b be positive integers such that a divides b^2, b^2 divides a^3, a^3 divides b^4, b^4 divides a^5, but a^5 does not divide b^6. Find with proof a pair (a, b) with this property where a is as small as possible.

Solution (inspired by Farzad Ghassemi’s solution). Let $a = Ad$ and $b = Bd$ with $\gcd(A, B) = 1$. Since $a^3 \mid b^4$ then $b^4 = a^3 q_1$ for some integer q_1. Then $d^4 B^4 = d^3 A^3 q_1$ and $d B^4 = A^3 q_1$. But $\gcd(A^3, B^4) = 1$ (since $\gcd(A, B) = 1$), thus $A^3 \mid d$. Similarly, since $b^4 \mid a^5$ then $a^5 = b^4 q_2$ for some integer q_2. Then $d A^5 = B^4 q_2$ and, since $\gcd(A^5, B^4) = 1$, then $B^4 \mid d$. Therefore, since $\gcd(A^3, B^4) = 1$, we conclude that $d = A^3 B^4 D$ for some positive integer D. Now, let us look at the last condition:

$\frac{b^6}{a^5} = \frac{b^6 d^6}{A^5 d^5} = \frac{B^6 A^3 B^4 D}{A^5} = \frac{B^{10} D}{A^2},$ \hspace{1cm} (1)

we already know A^2 and B^{10} are relatively prime, thus $a^5 \nmid b^6$ if and only if $A^2 \nmid D$. Now let us check that these are sufficient conditions. i.e., we will check that if $a = Ad = A^4 B^4 D$, $b = Bd = A^3 B^5 D$ with $\gcd(A, B) = 1$ and $A^2 \nmid D$, then $a \mid b^2 \mid a^3 \mid b^4 \mid a^5 \nmid b^6$. Indeed, $b^2 = (A^2 B^6 D) a$, $a^3 = (A^6 B^2 D) b$, $b^4 = (B^8 D) a^3$, $a^5 = (A^8 D) b^4$, and the last condition holds since $A^2 \nmid D$ (see (1)).

Finally, to find the smallest value $a = A^4 B^4 D$ we need that $A \geq 2$ (since $A^2 \nmid D$), $B \geq 1$, and $D \geq 1$. The values $A = 2, B = D = 1$ give $a = 2^4 = 16$ and $b = 2^3 = 8$ which is the pair (a, b) with smallest value a. Notice that to find the characterization of all pairs satisfying the conditions we did not use $a \mid b^2$ and $b^2 \mid a^3$.
