Problem of the Week 9, Fall 2008

Triangle ABC has $AC = 9$, $AB = 12$, and $BC = 15$. The points M and N are the midpoints of the segments AC and AB, respectively. A point L is constructed on segment BC, such that $LC = 3$.

Segments BM and CN intersect at O, and segment AL intersects BM and CN at P and Q, respectively. What is the area of triangle OPQ?

\[\begin{array}{c}
A \\
\hspace{1cm} N \\
\hspace{2cm} O \\
\hspace{3cm} P \\
\hspace{4cm} M \\
B \hspace{2cm} L \hspace{1cm} C
\end{array} \]

Solution by organizers. Because $9^2 + 12^2 = 15^2$, then ABC is a right triangle. We use coordinate geometry placing A on the origin, B on the positive x-axis, and C on the positive y-axis. Then, $A = (0,0), B = (12,0), C = (0,9), M = (0,\frac{9}{2}), N = (6,0)$. To find the coordinates (L_x,L_y) of L, let R be the point on AC such that $L'R$ is horizontal. Triangles ABC and RLC are similar and thus $\frac{RL}{AB} = \frac{LC}{BC} = \frac{CR}{CA}$. That is, $\frac{L_x}{12} = \frac{3}{15} = \frac{9-L_y}{9}$. This gives $L = (L_x,L_y) = (\frac{12}{5}, \frac{36}{5})$. To find the coordinates of $O, P,$ and Q, we find the equations of the lines $AL, BM,$ and CN.

\[\begin{align*}
\overrightarrow{AL} & : y = 3x, \\
\overrightarrow{BM} & : y = -\frac{3}{8}x + \frac{9}{2}, \\
\overrightarrow{CN} & : y = -\frac{3}{2}x + 9.
\end{align*} \]

The three intersections are

\[\begin{align*}
O & = \overrightarrow{BM} \cap \overrightarrow{CN} = (4,3), \\
P & = \overrightarrow{AL} \cap \overrightarrow{BM} = \left(\frac{4}{3},4\right), \\
Q & = \overrightarrow{AL} \cap \overrightarrow{CN} = (2,6).
\end{align*} \]

Finally, the area of triangle PQR is

\[\frac{1}{2} \left| \det \begin{pmatrix}
4 & 4 & 2 \\
3 & 4 & 6 \\
1 & 1 & 1
\end{pmatrix} \right| = 3. \]