
Krishna Choudhary 9th grade Granada Hills Character High School

Statement	Reason	
1. I_2 and I_1 are centers of circles that are inscribed in triangles ADC	1. definition of incenters	
and ADB respectively		
2. Let P be the point where circle I_2 intersects AC	2-3. Inscribed circles have one tangent	
3. Let R be the point where circle I_1 intersects AB	to each side of the triangle	
4. Construct a line that is parallel to AB , that passes through I_{I} , and	4. Construction	
that intersects AC at Y		
5. Construct a line that is parallel to AC , that passes through I_2 , and	5. Construction	
that intersects AB at X		
6. Let Q be the point where $I_1 Y$ and $I_2 X$ intersect	6. the lines intersect	
7. Angle $CYI_I = CAB$	7. Corresponding angles are equal	
8. Measure of angle $CYI_I = 90$ degrees	8. Substitution	
9. Angle $CYI_I = I_2QI_I$	9. Corresponding angles are equal	
10. Measure of Angle $I_2QI_1 = 90$ degrees	10. Substitution	
11. Measure of Angle $I_2 XB = 90$ degrees	11-13. Corresponding Angles and	
2. Measure of Angle $PI_2X = 90$ degrees	substitution	
3. Measure of Angle $RI_IY = 90$ degrees		
4. $PAXI_2$ is a rectangle	14-17. if all the interior angles of a	
5. RAYI ₁ is a rectangle	quadrilateral are right angles, then the	
6. QI_IRX is a rectangle	quadrilateral is a rectangle	
7. QI_2PY is a rectangle		
8. I_1R is the radius of Circle I_1 , and I_2P is the radius of	18. Length from center of circle to	
Circle I ₂	tangent = radius	
$9. I_2 Q = I_2 X - Q X$	19. Addition prop. of segments	
$0. QX = I_1 R$	20. def. of rectangle	
1. $I_I R = Radius \ of \ circle \ I_I$	21. Reason #18	
·		
$2. I_2 X = AP$	22. def. of rectangle	
	23. substitution for step 18	
	24. Reason # 18	
$5. QY = I_2 P$	25. Reason #19	
6. $I_2P = Radius \ of \ circle \ I_2$	26. Reason #20	

$27. I_I Y = AR$	27. Reason #21
28. $I_1Q = AR - Radius \text{ of Circle } I_2$	28. substitution from step 23
29. Radius $I_1 = -\frac{1}{2} * (AB-DB-DA)$; Radius $I_2 = -\frac{1}{2} * (AC-DC-DA)$	29. The radius of circle inscribed in
	right triangle theorem
30. Let T_1 and T_2 be the points where Circle I_2 is tangent to sides <i>CD</i> and <i>AD</i> , respectfully	30-31. Reason # 2-3
31. Let S_1 and S_2 be the points where Circle I_1 is tangent to sides <i>BD</i> and <i>AD</i> , respectfully	
32. $I_2T_1DT_2$ and $I_1S_1DS_2$ are squares	32. If a circle is inscribed in a right
	triangle, the quadrilateral formed from
	it radii, the sectors of the two legs, and
	the main right angle is a square
33. I_2T_1 is the radius of circle I_2 , I_1S_1 is the radius of circle I_1	33. Reason #18
34. $T_2D = I_2T_1, S_2D = I_1S_1$	34. def. of square
35. T_2D and S_2D are the radii of circles I_2 and I_1	35. substitution
$36. AP = AT_2, AR = AS_2$	36. Tangents to a circle from an
	external point are equal
$37. AT_2 = AD - T_2D, AS_2 = AD - S_2D$	37. Reason #19
38. $AT_2 = AD - Radius \text{ of } I_2, AS_2 = AD - Radius \text{ of } I_1$	38. substitution from step #35
39. $AP = AD - Radius \text{ of } I_2, AR = AD - Radius \text{ of } I_1$	39. substitution from step #36
$40. AP = AD - [-\frac{1}{2} * (AC - DC - DA)], AR = AD - [-\frac{1}{2} * (AB - DB - DA)]$	40. substitution from step #29
41. $AP = \frac{1}{2}AD + \frac{1}{2}AC - \frac{1}{2}CD$, $AR = \frac{1}{2}AD + \frac{1}{2}AB - \frac{1}{2}BD$	41. Arithmetic
42. $I_2Q = AP$ - Radius of circle I_1 , $I_1Q = AR$ - Radius of Circle I_2	42. Reason #19
43. $I_2Q = [\frac{1}{2}AD + \frac{1}{2}AC - \frac{1}{2}CD] - [-\frac{1}{2}*(AB-DB-DA)],$	43. Substitution from steps #41 and #29
$I_{I}Q = [\frac{1}{2}AD + \frac{1}{2}AB - \frac{1}{2}BD] - [-\frac{1}{2}*(AC - DC - DA)]$	
44. $I_2Q = \frac{1}{2}AC - \frac{1}{2}CD + \frac{1}{2}AB - \frac{1}{2}DB$	44. Arithmetic
$I_1Q = \frac{1}{2}AC - \frac{1}{2}CD + \frac{1}{2}AB - \frac{1}{2}DB$	
$45. I_2 Q = I_1 Q$	45. Substitution
46. I_2QI_1 is a right isosceles triangle	46. a triangle with two equal side and a
	right angle is a right isosceles triangle
47. Angle QI_2I_1 is 45 degrees, Angle QI_1I_2 is 45 degrees	47. definition of right isosceles triangle

48. RK = AK - AR, PL = AL - AP	48. Reason #19
49. AK = AL = AD	49. Given
50. $AR = AS_2 = AD - S_2D$, $AP = AT_2 = AD - T_2D$	50. Reasons #19 and #36
51. $RK = AD-[AD-S_2D], PL = AD-[AD-T_2D]$	51. Substitution from step #48
52. $RK=S_2D$, $PL=T_2D$	52. arithmetic
53. RK = Radius of circle I_1 , PL = Radius of circle I_2	53. substitution from step #34
54. I_1R = Radius of Circle I_1 , I_2P = Radius of Circle I_2	54. Reason #18
55. $RK=I_1R$, $PL=I_2P$	55. Substitution
56. Triangles I1RK and I2PL are right isosceles triangles	56. Reason #46
57. Angles I_2LP , LI_2P , KI_1R , and I_1KR are 45 degrees each.	57. Reason #47
58. Angles PI_2Q and RI_1Q are right angles	58. definition of rectangle
59. Angles LI_2I_1 and I_2I_1K are straight angles.	59. Angles whose measure is 180
	degrees is a straight angle
60. L, I ₂ , I ₁ , and K are on the same line.	60. def. of a straight angle

-

.

•.,