Problem of the Week 13, Fall 2005

Solution by the organizers. The answer is 2499 . Any $n \in \mathbb{N}$ can be written as

$$
n=99 q_{1}+r_{1} \text { and } n=101 q_{2}+r_{2}
$$

where q_{1}, q_{2}, r_{1} and r_{2} are non-negative integers such that $0 \leq r_{1} \leq 98$ and $0 \leq r_{2} \leq 100$. If n is a solution to

$$
\left\lfloor\frac{n}{99}\right\rfloor=\left\lfloor\frac{n}{101}\right\rfloor
$$

then $q_{1}=q_{2}$. Thus

$$
n=99 q_{1}+r_{1}=101 q_{1}+r_{2}
$$

and

$$
r_{1}-r_{2}=2 q_{1} .
$$

This means that all pairs of integers r_{1} and r_{2} that have the same parity (both even or both odd) and such that $98 \geq r_{1} \geq r_{2} \geq 0$ generate a solution (with the exception of $r_{1}=r_{2}=0$ because n cannot be 0). Therefore the possible values for r_{1} and r_{2} are

r_{1}	r_{2}	$\#$
1	1	1
2	2,0	2
3	3,1	2
4	$4,2,0$	3
5	$5,3,1$	3
6	$6,4,2,0$	4
7	$7,5,3,1$	4
\vdots	\vdots	
96	$96,94,92, \ldots, 4,2,0$	49
97	$97,95,93, \ldots 5,3,1$	49
98	$98,96,94, \ldots, 4,2,0$	50.

Hence the number of solutions is

$$
2(1+2+3+4+\ldots+50)-1-50=2\left(\frac{50(51)}{2}\right)-1-50=2499
$$

