Chapter 13, Problem 11.

A gas mixture has the following composition on a mole basis: 60 percent N_{2} and 40 percent CO_{2}. Determine the gravimetric analysis of the mixture, its molar mass, and gas constant.

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an " E " are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
© 2006 The McGraw-Hill Companies.

Chapter 13, Problem 33.

A rigid tank contains 0.5 kmol of Ar and 2 kmol of N_{2} at 250 kPa and 280 K . The mixture is now heated to 400 K . Determine the volume of the tank and the final pressure of the mixture.

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an " E " are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
© 2006 The McGraw-Hill Companies.

Chapter 13, Problem 34.

 molar mass of the gas mixture.

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an " E " are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
© 2006 The McGraw-Hill Companies.

Chapter 13, Problem 37.

A gas mixture at 350 K and 300 kPa has the following volumetric analysis: 65 percent $\mathrm{N}_{2}, 20$ percent O_{2}, and 15 percent CO_{2}. Determine the mass fraction and partial pressure of each gas.

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an " E " are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
© 2006 The McGraw-Hill Companies.

Chapter 13, Problem 38.

A rigid tank that contains 1 kg of N_{2} at $25^{\circ} \mathrm{C}$ and 300 kPa is connected to another rigid tank that contains 3 kg of O_{2} at $25^{\circ} \mathrm{C}$ and 500 kPa . The valve connecting the two tanks is opened, and the two gases are allowed to mix. If the final mixture temperature is $25^{\circ} \mathrm{C}$, determine the volume of each tank and the final mixture pressure.

N_{2}		O_{2}	
1 kg		3 kg	
$25^{\circ} \mathrm{C}$	ฐ		$25^{\circ} \mathrm{C}$
300 kPa		500 kPa	

Figure P13-38

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an " E " are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
(C) 2006 The McGraw-Hill Companies.

Chapter 13, Problem 39.

A volume of $0.3 \mathrm{~m}^{3}$ of O_{2} at 200 K and 8 MPa is mixed with $0.5 \mathrm{~m}^{3}$ of N_{2} at the same temperature and pressure, forming a mixture at 200 K and 8 MPa . Determine the volume of the mixture, using (a) the ideal-gas equation of state, (b) Kay's rule, and (c) the compressibility chart and Amagat's law.

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an "E" are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
(C) 2006 The McGraw-Hill Companies.

Chapter 13, Problem 55.

(Es) Ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$ at $20^{\circ} \mathrm{C}$ and 200 kPa and methane $\left(\mathrm{CH}_{4}\right)$ at $45^{\circ} \mathrm{C}$ and 200 kPa enter an adiabatic mixing chamber. The mass flow rate of ethane is $9 \mathrm{~kg} / \mathrm{s}$, which is twice the mass flow rate of methane. Determine (a) the mixture temperature and (b) the rate of entropy generation during this process, in kW / K. Take $T_{0}=25^{\circ} \mathrm{C}$.

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an "E" are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
© 2006 The McGraw-Hill Companies.

Chapter 13, Problem 63.

A piston-cylinder device contains 6 kg of H_{2} and 21 kg of N_{2} at 160 K and 5 MPa . Heat is now transferred to the device, and the mixture expands at constant pressure until the temperature rises to 200 K . Determine the heat transfer during this process by treating the mixture (a) as an ideal gas and (b) as a nonideal gas and using Amagat's law.

Figure P13-63

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an "E" are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

Thermodynamics: An Engineering Approach, 5/e, Yunus Çengel and Michael Boles,
(C) 2006 The McGraw-Hill Companies.

Chapter 13, Problem 65.

Air, which may be considered as a mixture of 79 percent N_{2} and 21 percent O_{2} by mole numbers, is compressed isothermally at 200 K from 4 to 8 MPa in a steady-flow device. The compression process is internally reversible, and the mass flow rate of air is $2.9 \mathrm{~kg} / \mathrm{s}$. Determine the power input to the compressor and the rate of heat rejection by treating the mixture (a) as an ideal gas and (b) as a nonideal gas and using Amagat's law.

Figure P13-65

* Problems designated by a "C" are concept questions, and students are encouraged to answer them all. Problems designated by an " E " are in English units, and the SI users can ignore them. Problems with the are solved using EES, and complete solutions together with parametric studies are included on the enclosed DVD. Problems with the are comprehensive in nature and are intended to be solved with a computer, preferably using the EES software that accompanies this text.

